完整後設資料紀錄
DC 欄位語言
dc.contributor.author林瑞杰en_US
dc.contributor.authorRui-Jie Linen_US
dc.contributor.author鄧清政en_US
dc.contributor.authorChing-Cheng Tengen_US
dc.date.accessioned2014-12-12T02:21:44Z-
dc.date.available2014-12-12T02:21:44Z-
dc.date.issued1998en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT870591006en_US
dc.identifier.urihttp://hdl.handle.net/11536/64933-
dc.description.abstract本論文是以模糊類神經網路(Fuzzy Neural Network)為基礎,提出一個調整歸屬函數的新方法。我們首先介紹模糊類神經網路,此網路具有模糊邏輯及神經網路的特性。第二部份證明高斯函數可以由數個標準差較小的其他高斯函數所組成。第三部份為修改模糊類神經網路的歸屬函數成為五層模糊類神經網路(FNN5)。第四部份利用五層模糊類神經網路去近似幾個函數並證明五層模糊類神經網路是一個廣泛近似器。最後,我們將這個方法應用到調整比例積分(PI)控制器。我們經過模擬後,發覺模糊類神經網路與五層模糊類神經網路在精確度的要求上,都有很良好的模擬結果,但是五層模糊類神經網路在微調時,比模糊類神經網路更具有精確的效果。zh_TW
dc.description.abstractIn this thesis, a new method to tune the membership functions of fuzzy neural network (FNN) is presented. First we study the FNN it inherits the property of both fuzzy inference system and neural network. Then we present that any gaussian function can be represented by the linear combination of gaussian functions with small standard deviation. Therefore, it can be substituted for the second layer of FNN (called FNN5). We use the FNN5 to approximate some functions and prove that it is a universal approximator. Furthermore, apply this proposed method to tune PI controller based on gain phase margin (GPM) specifications. Both FNN and FNN5 have high performance by the simulation verification, however FNN5 is more accurate than FNN on fine-tuning.en_US
dc.language.isoen_USen_US
dc.subject模糊類神經網路zh_TW
dc.subject高斯函數zh_TW
dc.subject廣泛近似器zh_TW
dc.subject歸屬函數zh_TW
dc.subject模糊zh_TW
dc.subject類神經網路zh_TW
dc.subjectFNNen_US
dc.subjectgaussian functionen_US
dc.subjectuniversal approximatioren_US
dc.subjectmembership functionen_US
dc.subjectfuzzyen_US
dc.subjectneural netwroken_US
dc.title使用加成性高斯歸屬函數之模糊類神經網路zh_TW
dc.titleAdditive Gaussian Membership Functions in Fuzzy Neural Networken_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
顯示於類別:畢業論文