完整后设资料纪录
DC 栏位 | 值 | 语言 |
---|---|---|
dc.contributor.author | 谢兆瑞 | en_US |
dc.contributor.author | Chao-Ray Hsieh | en_US |
dc.contributor.author | 许根玉 | en_US |
dc.contributor.author | 邱尔德 | en_US |
dc.contributor.author | Ken-Yuh Hsu | en_US |
dc.contributor.author | Arthur E. T. Chiou | en_US |
dc.date.accessioned | 2014-12-12T02:21:58Z | - |
dc.date.available | 2014-12-12T02:21:58Z | - |
dc.date.issued | 1998 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT870614012 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/65027 | - |
dc.description.abstract | 本论文系以理论分析、电脑模拟与光学实验来对全像资讯储存的热定影技术进行基础性的研究。我们从Kukhtarev所提出的光折变方程式出发,再加入描述离子移动的方程式,并利用线性近似法,分别建构出在晶体短路架构与晶体开路架构下之全像储存热定影的理论模型。其次,透过电脑计算,我们模拟热定影之动态过程,并寻找影响热定影效率的各种因素之最佳化条件。在模拟计算当中,我们并将温度变化的过渡效应考虑进去,使整个理论更具实用性与完整性。本论文中我们探讨两种热定影过程:一是低温记录、高温补偿、低温显影,称为L-H-L过程。一是高温记录、低温显影,称为H-L过程。结果发现,L-H-L过程的关键因素为补偿温度与时间,针对某一组晶体参数欲得最佳绕射效率,可先选择补偿时间,再找出对应的补偿温度。而对于H-L过程,给定一组晶体参数则有一个最佳记录温度存在,因此应先找出最佳记录温度,再找出对应的纪录时间。此外,对于材料参数与记录时入射光之角度的选取,我们亦从电脑计算中分别得到一个最佳化的条件。最后,我们以光学实验,对于理论中所预测的各种现象与最佳条件,进行验证。实验结果显示,在趋势上几乎都可以与理论所估计的相符合。这也说明了,我们所建构的理论可以做为设计全像储存热定影的一个重要依据。 | zh_TW |
dc.description.abstract | In this thesis, we investigate the thermal fixing techniques of volume holographic storage in LiNbO3 crystals. We have performed theoretical modeling, computer simulations, and optical experiments. First, we incorporate ionic transport equations into the Kukhtarev's equations for photorefractive crystals. Then by using the linear approximation method, we have developed a theoretical model for thermal fixing under both short-circuit condition and open-circuit conditions on crystals. The temperature transition effect during the heating and cooling processes have been taken into account in our theoretical model. We have considered two processes of the thermal fixing: one is recording at low temperature, compensating at high temperature, and then developing at low temperature, so-called the L-H-L process. The other one is recording at high temperature, and then developing at low temperature, so-called the H-L process. Our calculations show that the compensation time and temperature are two key points of thermal fixing. In order to achieve optimal diffraction efficiency for a given material parameters, we could first choose a suitable compensation time and then the corresponding compensation temperature can be obtained. On the other hand, for the H-L process, there exists an optimal recording temperature for a given material parameters. Therefore, we should first find the recording temperature, and then the corresponding recording time can be obtained. Furthermore, we have also studied the effects of material parameters and the recording angles on thermal fixing. During this investigation we have performed optical experiment. The results show a coincidence with the simulation results. Our studies provide a useful guide for designing the thermal fixing procedures of holographic storage. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 光折变晶体 | zh_TW |
dc.subject | 热定影 | zh_TW |
dc.subject | 铌酸锂晶体 | zh_TW |
dc.subject | 体积全像储存 | zh_TW |
dc.subject | photorefractive crystal | en_US |
dc.subject | Thermal fixing | en_US |
dc.subject | Lithium niobate crystal | en_US |
dc.subject | Volume hologram | en_US |
dc.title | 铌酸锂晶体全像储存热定影技术之研究 | zh_TW |
dc.title | Thermal fixing of volume holograms in LiNbO3 crystals | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 光电工程学系 | zh_TW |
显示于类别: | Thesis |