Full metadata record
DC FieldValueLanguage
dc.contributor.authorShih, Yuan-Kangen_US
dc.contributor.authorLin, Cheng-Kuanen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:08:25Z-
dc.date.available2014-12-08T15:08:25Z-
dc.date.issued2009-11-01en_US
dc.identifier.issn0898-1221en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.camwa.2009.07.087en_US
dc.identifier.urihttp://hdl.handle.net/11536/6519-
dc.description.abstractA bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to vertical bar V(G)vertical bar inclusive. A hamiltonian bipartite graph G is bipanpositionable if, for any two different vertices x and y, there exists a hamiltonian cycle C of G such that d(c)(x, y) = k for any integer k with d(G)(x, y) <= k <= vertical bar V(G)vertical bar/2 and (k - d(G)(x, y)) being even. A bipartite graph G is k-cycle bipanpositionable if, for any two different vertices x and y, there exists a cycle of G with d(C)(x, y) = l and vertical bar V(C)vertical bar = k for any integer l with d(G)(x, y) <= l <= k/2 and (l - d(G)(x, y)) being even. A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for every even integer k, 4 <= k <= vertical bar V(G)vertical bar. We prove that the hypercube Q(n) is bipanpositionable bipancyclic for n >= 2. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectBipanpositionableen_US
dc.subjectBipancyclicen_US
dc.subjectHypercubeen_US
dc.subjectHamiltonianen_US
dc.titleThe bipanpositionable bipancyclic property of the hypercubeen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.camwa.2009.07.087en_US
dc.identifier.journalCOMPUTERS & MATHEMATICS WITH APPLICATIONSen_US
dc.citation.volume58en_US
dc.citation.issue9en_US
dc.citation.spage1722en_US
dc.citation.epage1724en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000271376600004-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000271376600004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.