Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Chung-Mengen_US
dc.contributor.authorTeng, Yuan-Hsiangen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:08:26Z-
dc.date.available2014-12-08T15:08:26Z-
dc.date.issued2009-11-01en_US
dc.identifier.issn0898-1221en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.camwa.2009.07.079en_US
dc.identifier.urihttp://hdl.handle.net/11536/6520-
dc.description.abstractIt is proved that there exists a path P(l)(x, y) of length l if d(AQn) (x, y) <= l <= 2(n) - 1 between any two distinct vertices x and y of AQ(n). Obviously, we expect that such a path P(l)(x, y) can be further extended by including the vertices not in P(l)(x, y) into a hamiltonian path from x to a fixed vertex z or a hamiltonian cycle. In this paper, we prove that there exists a hamiltonian path R(x, y, z;l) from x to z such that d(R(x,y,z;l)) (x, y) = l for any three distinct vertices x, y, and z of AQ(n) with n >= 2 and for any d(AQn) (x, y)<= l <= 2(n) - 1 - d(AQn) (y, z). Furthermore, there exists a hamiltonian cycle S(x, y; l) such that d(S(x,y;l)) (x, y) = l for any two distinct vertices x and y and for any d(AQn) (x, y) <= l <= 2(n-1). (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHamiltonianen_US
dc.subjectAugmented cubesen_US
dc.titleEmbedding Hamiltonian paths in augmented cubes with a required vertex in a fixed positionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.camwa.2009.07.079en_US
dc.identifier.journalCOMPUTERS & MATHEMATICS WITH APPLICATIONSen_US
dc.citation.volume58en_US
dc.citation.issue9en_US
dc.citation.spage1762en_US
dc.citation.epage1768en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000271376600009-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000271376600009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.