Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Chung-Meng | en_US |
dc.contributor.author | Teng, Yuan-Hsiang | en_US |
dc.contributor.author | Tan, Jimmy J. M. | en_US |
dc.contributor.author | Hsu, Lih-Hsing | en_US |
dc.date.accessioned | 2014-12-08T15:08:26Z | - |
dc.date.available | 2014-12-08T15:08:26Z | - |
dc.date.issued | 2009-11-01 | en_US |
dc.identifier.issn | 0898-1221 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.camwa.2009.07.079 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/6520 | - |
dc.description.abstract | It is proved that there exists a path P(l)(x, y) of length l if d(AQn) (x, y) <= l <= 2(n) - 1 between any two distinct vertices x and y of AQ(n). Obviously, we expect that such a path P(l)(x, y) can be further extended by including the vertices not in P(l)(x, y) into a hamiltonian path from x to a fixed vertex z or a hamiltonian cycle. In this paper, we prove that there exists a hamiltonian path R(x, y, z;l) from x to z such that d(R(x,y,z;l)) (x, y) = l for any three distinct vertices x, y, and z of AQ(n) with n >= 2 and for any d(AQn) (x, y)<= l <= 2(n) - 1 - d(AQn) (y, z). Furthermore, there exists a hamiltonian cycle S(x, y; l) such that d(S(x,y;l)) (x, y) = l for any two distinct vertices x and y and for any d(AQn) (x, y) <= l <= 2(n-1). (C) 2009 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Hamiltonian | en_US |
dc.subject | Augmented cubes | en_US |
dc.title | Embedding Hamiltonian paths in augmented cubes with a required vertex in a fixed position | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.camwa.2009.07.079 | en_US |
dc.identifier.journal | COMPUTERS & MATHEMATICS WITH APPLICATIONS | en_US |
dc.citation.volume | 58 | en_US |
dc.citation.issue | 9 | en_US |
dc.citation.spage | 1762 | en_US |
dc.citation.epage | 1768 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000271376600009 | - |
dc.citation.woscount | 4 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.