Full metadata record
DC FieldValueLanguage
dc.contributor.authorHo, Tung-Yangen_US
dc.contributor.authorLin, Cheng-Kuanen_US
dc.date.accessioned2014-12-08T15:08:28Z-
dc.date.available2014-12-08T15:08:28Z-
dc.date.issued2009-11-01en_US
dc.identifier.issn1016-2364en_US
dc.identifier.urihttp://hdl.handle.net/11536/6537-
dc.description.abstractMany papers on the fully connected cubic networks have been published for the past several years due to its favorite properties. In this paper, we consider the fault-tolerant hamiltonian connectivity and fault-tolerant hamiltonicity of the fully connected cubic network. We use FCCN(n) to denote the fully connected cubic network of level n. Let G = (V, E) be a graph. The fault-tolerant hamiltonian connectivity H(f)(k) (G) is defined to be the maximum integer l such that G - F remains hamiltonian connected for every F subset of V(G) boolean OR E(G) with vertical bar F vertical bar <= l. The fault-tolerant hamiltonicitly H(f)(G) is defined to be the maximum integer l such that G - F remains hamiltonian for every F subset of V(G) boolean OR E(G) with vertical bar F vertical bar <= l. We prove that H(f)(k) (FCCN(n)) = 0 and H(f)(FCCN(n)) = 1 if n >= 2.en_US
dc.language.isoen_USen_US
dc.subjecthamiltonianen_US
dc.subjecthamiltonian connecteden_US
dc.subjectfault-tolerant hamiltonianen_US
dc.subjectfault-tolerant hamiltonian connecteden_US
dc.subjectfully connected cubic networken_US
dc.titleFault-Tolerant Hamiltonian Connectivity and Fault-Tolerant Hamiltonicity of the Fully Connected Cubic Networksen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF INFORMATION SCIENCE AND ENGINEERINGen_US
dc.citation.volume25en_US
dc.citation.issue6en_US
dc.citation.spage1855en_US
dc.citation.epage1862en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000271834700012-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000271834700012.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.