標題: ZETA FUNCTIONS FOR HIGHER-DIMENSIONAL SHIFTS OF FINITE TYPE
作者: Hu, Wen-Guei
Lin, Song-Sun
應用數學系
Department of Applied Mathematics
關鍵字: Zeta function;shift of finite type;patterns generation problem;phase-transition;Ising model;cellular neural networks
公開日期: 1-十一月-2009
摘要: This work investigates zeta functions for d-dimensional shifts of finite type, d >= 3. First, the three-dimensional case is studied. The trace operator T(a1,a2;b12) and rotational matrices R(x;a1,a2;b12) and R(y;a1,a2;b12) are introduced to study [GRAPHICS] -periodic patterns. The rotational symmetry of T(a1,a2;b12) induces the reduced trace operator tau(a1,a2;b12) and then the associated zeta function zeta(a1,a2;b12) = (det(I - s(a1a2)tau(a1,a2;b12)))(-1). The zeta function zeta is then expressed as zeta = Pi(infinity)(a1=1) Pi(infinity)(a2=1) Pi(a1-1)(b12=0) zeta(a1,a2;b12), a reciprocal of an infinite product of polynomials. The results hold for any inclined coordinates, determined by unimodular transformation in GL(3)(Z). Hence, a family of zeta functions exists with the same integer coefficients in their Taylor series expansions at the origin, and yields a family of identities in number theory. The methods used herein are also valid for d-dimensional cases, d >= 4, and can be applied to thermodynamic zeta functions for the three-dimensional Ising model with finite range interactions.
URI: http://dx.doi.org/10.1142/S0218127409025055
http://hdl.handle.net/11536/6540
ISSN: 0218-1274
DOI: 10.1142/S0218127409025055
期刊: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
Volume: 19
Issue: 11
起始頁: 3671
結束頁: 3689
顯示於類別:期刊論文


文件中的檔案:

  1. 000274915300005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。