Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, Wen-Gueien_US
dc.contributor.authorLin, Song-Sunen_US
dc.date.accessioned2014-12-08T15:08:28Z-
dc.date.available2014-12-08T15:08:28Z-
dc.date.issued2009-11-01en_US
dc.identifier.issn0218-1274en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0218127409025055en_US
dc.identifier.urihttp://hdl.handle.net/11536/6540-
dc.description.abstractThis work investigates zeta functions for d-dimensional shifts of finite type, d >= 3. First, the three-dimensional case is studied. The trace operator T(a1,a2;b12) and rotational matrices R(x;a1,a2;b12) and R(y;a1,a2;b12) are introduced to study [GRAPHICS] -periodic patterns. The rotational symmetry of T(a1,a2;b12) induces the reduced trace operator tau(a1,a2;b12) and then the associated zeta function zeta(a1,a2;b12) = (det(I - s(a1a2)tau(a1,a2;b12)))(-1). The zeta function zeta is then expressed as zeta = Pi(infinity)(a1=1) Pi(infinity)(a2=1) Pi(a1-1)(b12=0) zeta(a1,a2;b12), a reciprocal of an infinite product of polynomials. The results hold for any inclined coordinates, determined by unimodular transformation in GL(3)(Z). Hence, a family of zeta functions exists with the same integer coefficients in their Taylor series expansions at the origin, and yields a family of identities in number theory. The methods used herein are also valid for d-dimensional cases, d >= 4, and can be applied to thermodynamic zeta functions for the three-dimensional Ising model with finite range interactions.en_US
dc.language.isoen_USen_US
dc.subjectZeta functionen_US
dc.subjectshift of finite typeen_US
dc.subjectpatterns generation problemen_US
dc.subjectphase-transitionen_US
dc.subjectIsing modelen_US
dc.subjectcellular neural networksen_US
dc.titleZETA FUNCTIONS FOR HIGHER-DIMENSIONAL SHIFTS OF FINITE TYPEen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218127409025055en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF BIFURCATION AND CHAOSen_US
dc.citation.volume19en_US
dc.citation.issue11en_US
dc.citation.spage3671en_US
dc.citation.epage3689en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000274915300005-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000274915300005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.