完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Hu, Wen-Guei | en_US |
dc.contributor.author | Lin, Song-Sun | en_US |
dc.date.accessioned | 2014-12-08T15:08:28Z | - |
dc.date.available | 2014-12-08T15:08:28Z | - |
dc.date.issued | 2009-11-01 | en_US |
dc.identifier.issn | 0218-1274 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1142/S0218127409025055 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/6540 | - |
dc.description.abstract | This work investigates zeta functions for d-dimensional shifts of finite type, d >= 3. First, the three-dimensional case is studied. The trace operator T(a1,a2;b12) and rotational matrices R(x;a1,a2;b12) and R(y;a1,a2;b12) are introduced to study [GRAPHICS] -periodic patterns. The rotational symmetry of T(a1,a2;b12) induces the reduced trace operator tau(a1,a2;b12) and then the associated zeta function zeta(a1,a2;b12) = (det(I - s(a1a2)tau(a1,a2;b12)))(-1). The zeta function zeta is then expressed as zeta = Pi(infinity)(a1=1) Pi(infinity)(a2=1) Pi(a1-1)(b12=0) zeta(a1,a2;b12), a reciprocal of an infinite product of polynomials. The results hold for any inclined coordinates, determined by unimodular transformation in GL(3)(Z). Hence, a family of zeta functions exists with the same integer coefficients in their Taylor series expansions at the origin, and yields a family of identities in number theory. The methods used herein are also valid for d-dimensional cases, d >= 4, and can be applied to thermodynamic zeta functions for the three-dimensional Ising model with finite range interactions. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Zeta function | en_US |
dc.subject | shift of finite type | en_US |
dc.subject | patterns generation problem | en_US |
dc.subject | phase-transition | en_US |
dc.subject | Ising model | en_US |
dc.subject | cellular neural networks | en_US |
dc.title | ZETA FUNCTIONS FOR HIGHER-DIMENSIONAL SHIFTS OF FINITE TYPE | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1142/S0218127409025055 | en_US |
dc.identifier.journal | INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | en_US |
dc.citation.volume | 19 | en_US |
dc.citation.issue | 11 | en_US |
dc.citation.spage | 3671 | en_US |
dc.citation.epage | 3689 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000274915300005 | - |
dc.citation.woscount | 0 | - |
顯示於類別: | 期刊論文 |