完整後設資料紀錄
DC 欄位語言
dc.contributor.author黎尚育en_US
dc.contributor.authorShang-Yu Lien_US
dc.contributor.author劉敦仁en_US
dc.contributor.authorDuen-Ren Liuen_US
dc.date.accessioned2014-12-12T02:23:01Z-
dc.date.available2014-12-12T02:23:01Z-
dc.date.issued1999en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT880396009en_US
dc.identifier.urihttp://hdl.handle.net/11536/65588-
dc.description.abstract三層式電子目錄,將電子目錄中的資料描述分為三層,包括了資源目錄階層、類別目錄階層、物品目錄階層。針對三層式電子目錄所儲存的交易資料進行關連式規則的探勘,可提供更詳盡有效的分析資訊。多重階層關連式規則之探勘,主要是利用資料庫中屬性分類架構的特性進行階層式分析,以有效的探勘強關連規則。 本研究以多重階層關連規則探勘方法為基礎,設計在三層式電子目錄中探勘關連規則的方法。所提出的方法,可有效率的發掘單一目錄階層及不同目錄階層間的強關連規則,粹取出隱藏在交易中的資訊,同時利用以分類架構進行階層式探勘的特性,減少候選項目集合之個數,降低掃瞄資料庫之次數。zh_TW
dc.description.abstractThree-level E-catalogs store goods information based on three-level metadata including resource level, category level, and goods level. Mining association rules from three-level E-catalogs can provide a detailed and effective way to analyze transaction information. Mining multiple-level association rules uses attribute concept hierarchy to effevtively perform level-wise mining of strong association rules. This study proposes an algorithm of mining association rule from three-level E-catalogs based on techniques for mining multiple-level association rules. The proposed algorithm is able to efficiently discover strong association rules of single level and level-crossing metadata information from three-level E-catalogs. Hidden and detaied association rules can thus be extracted from transaction databases. Moreover the algorithm applies level-wise mining, based on the concept hierarchy, to decrease the number of candidate itemsets and reduce the time of scanning database.en_US
dc.language.isozh_TWen_US
dc.subject三層式電子目錄zh_TW
dc.subject強關連規則zh_TW
dc.subject演算法zh_TW
dc.subjectThree-level E-catalogsen_US
dc.subjectstrong association rulesen_US
dc.subjectalgorithmen_US
dc.title三層式電子目錄之關連規則探勘zh_TW
dc.titleMining Association Rules from Three-level E-Catalogsen_US
dc.typeThesisen_US
dc.contributor.department資訊管理研究所zh_TW
顯示於類別:畢業論文