完整後設資料紀錄
DC 欄位語言
dc.contributor.author郭權鋒en_US
dc.contributor.authorGary Chuan-Feng Kuoen_US
dc.contributor.author韓復華en_US
dc.contributor.authorAnthony Fu-Wha Hanen_US
dc.date.accessioned2014-12-12T02:23:02Z-
dc.date.available2014-12-12T02:23:02Z-
dc.date.issued1999en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT880423004en_US
dc.identifier.urihttp://hdl.handle.net/11536/65611-
dc.description.abstract本研究之目的在於運用SIMMOD模擬模式構建國內北高空運走廊之雙機場系統(台北松山機場與高雄小港機場)應用模式,藉此對SIMMOD模擬模式在實際多機場系統應用之可行性上進行評估與探討。本文以北高空運走廊之雙機場系統為分析個案,進行模擬模式之構建、修正與驗證,並配合國內機場發展、航路規劃與運量成長,建立若干發展情境(Scenario),以進行國內南北機場系統主幹之模擬應用分析。 本研究依據民航局出版的台北飛航情報區飛航指南(AIP)所提供之資料輔以航管人員之訪談,進行應用模式之構建。在模式驗證部分,對空域與空邊分別選取航機空中時間與離場等候時間作為驗證指標,經驗證結果顯示本文所構建之雙機場系統模擬模式與松山機場、高雄機場、北高線航班的實際運作狀況之誤差皆在7 %以下,證實本模式可以正確表現航班實際運作的情形。 在發展情境分析方面,本文以Gilbo機場容量曲線推估方法為基礎,輔以本研究構建之北高雙機場系統模擬模式,利用航班增量之方法產生足夠之起降架次資料,以推估松山機場與高雄機場之跑道運作容量。結果顯示松山機場目前系統運作容量為36架之起降組合,而高雄機場之系統運作容量為34架之起降組合。再者,分別選取尖、離峰之時段,進行松山機場北高航線進、離場航機之增班模擬,並從SIMMOD模擬模式指派的班機起降時間得知目前松山機場未被使用之時間帶。最後,利用本模式重新修正航路,當台灣西部之W-4航路南北向航道(後龍至大林間)左右拉出5浬隔離時,因航機對向衝突機率降低,而使航機盤旋與繞道之延滯減少;因此儘管航路修正後,部分航路之航行距離增加,但航路變更後之進離場航班空中時間、空中延滯、離場等候時間皆較航路變更前有改善。 本論文為國內首次將SIMMOD模擬模式應用在多機場系統的規劃研究上,透過北高空運走廊之個案研究,證實SIMMOD模擬模式於國內之應用確實可行,希冀本研究之結果可作為國內民航相關單位改善北高空運走廊瓶頸及機場服務相關規劃之參考。zh_TW
dc.description.abstractThis thesis applied the Airport and Airspace Simulation Model (SIMMOD) to analyze the Taipei-Kaohsiung air transportation corridor. SIMMOD is a computer simulation package developed by the Federal Aviation Administration (FAA) of the United States in 1970's. The SIMMOD has been widely applied in analyzing and planning for airports and airspace system in United States and Europe. In this research we developed a multi-airport simulation model system including both Taipei (TSA) and Kaohsiung (KHS) airports as well as the airspace in between. The Aeronautical Information Publication (AIP) and interview-in-person data of both airports were collected to develop the basic simulation model. The model was calibrated and validated by observed field operational data and the automated ATC (air traffic control) data. This research compared the simulated outcome of the SIMMOD model with the observed data of the TSA and KHS airports. The results showed that the average deviations were all less than 7%. For prediction applications, we considered several scenarios such as the air traffic growth which would represent near-saturation or even over-saturation operations of the airport under existing air traffic control environment and influence as some en-route be changed. We then applied the Gilbo model to estimate the runway capacity of TSA and KHS based on the simulation output of those growth scenarios in terms of the number of arrival and departure flights in the peak period. The estimated airport capacity is 36 flights per hour of TSA and 34 flights per hour of KHS. We also investigated the possible additional time slots of TSA airports through the flights arrival and departure time assigned by SIMMOD model.en_US
dc.language.isozh_TWen_US
dc.subject模擬模式zh_TW
dc.subject機場系統zh_TW
dc.subject模擬分析zh_TW
dc.subject機場容量zh_TW
dc.subject容量包絡線zh_TW
dc.subject時間帶zh_TW
dc.subjectsimulation modelen_US
dc.subjectairport systemen_US
dc.subjectsimulation analysisen_US
dc.subjectSIMMODen_US
dc.subjectairport capacityen_US
dc.subjectcapacity curveen_US
dc.subjecttime slotsen_US
dc.title台灣地區機場與空域系統模擬模式分析-以北高空運走廊為例zh_TW
dc.titlenalysis of the Airport and Airspace System Simulation Model in Taiwan :A Case Study of the Taipei-Kaohsiung Air Corridoren_US
dc.typeThesisen_US
dc.contributor.department運輸與物流管理學系zh_TW
顯示於類別:畢業論文