Full metadata record
DC FieldValueLanguage
dc.contributor.author廖詩佩en_US
dc.contributor.authorShih-Pei Liaoen_US
dc.contributor.author馮潤華en_US
dc.contributor.authorRuenn-Hwa Ferngen_US
dc.date.accessioned2014-12-12T02:24:01Z-
dc.date.available2014-12-12T02:24:01Z-
dc.date.issued1999en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT880507008en_US
dc.identifier.urihttp://hdl.handle.net/11536/66162-
dc.description.abstract本論文中將探討來自於偏微分方程經離散化後所得之非線性特徵值問題。吾人結合多重網格法求解線性系統,以及網格轉換法改善逆迭代法中之初始猜測向量等技巧,提出多重網格形態之逆迭代法。並且將上述非線性特徵值問題經矩陣轉換後,應用此方法求解絕對最小之特徵值。此方法最後將應用於探討挫屈問題之穩定性。zh_TW
dc.description.abstractThe article is concerned with aspects of the nonlinear eigenvalue problems which arise from partial differential equation by finite difference discretization: T(λ)x=0, where T(λ) is a n ×n matrix whose elements are analytical functions in parameter λ. We shall propose the multigrid type inverse iteration algorithms which use the multigrid linear solver for finding the smallest eigenvalue in magnitude of the nonlinear eigenvalue problem and grid transform strategy for finding the initial vector. The methods finally illustrate by numerical results from experiments with buckling problem.en_US
dc.language.isoen_USen_US
dc.subject多重網格zh_TW
dc.title多重網格型態之逆迭代法求解非線性特徵值問題zh_TW
dc.titleMultigrid-type Inverse Iteration Algorithms for Nonlinear Eigenvalue Problemsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis