标题: 可预测分歧点及调整步长的延伸轨迹之数值方法
Path Following Continuation with Bifurcation Prediction and Step-Size Control
作者: 柯惠容
Hui-Jung Ko
冯润华 
Dr. Ruenn-Hwa Ferng
应用数学系所
关键字: 分歧点;调整步长;延伸轨迹;虚拟弧长;两点边界值的问题;打靶法;Bifurcation Points;Step-Size Control;Path Following Continuation;Pseudo-Arclength;Two-Point Boundary Value Problems;Shooting Method
公开日期: 1999
摘要:   在此篇论文中,介绍了描绘参数相关的非线性方程式之解轨迹的虚拟弧长延续数值法。这样的问题出现在很多应用中,例如:初值问题的定态解及两点边界值的问题等等。我们藉由数值实验显示了与一阶Lagrange矩阵内插为根据之分歧点预测计划结合的虚拟弧长延续过程可以预测出单纯分歧点的位置及利用简单的子空间投影策略可描绘出次要的分歧轨迹。此外,由Seydel提出,建立在打靶法的观念上之步长控制技巧可以大幅改善计算效率。我们也举例、以图表说明,呈现一些数值实验结果。
In this thesis, we investigate the well-known pseudo-arclength
continuation method for numerically tracing the solution paths of parameter-dependent nonlinear equations. Such problems arise in many applications, e.g., steady-state solution of initial-value problems and two-point boundary value problems, etc. We show by numerical experiments that the pseudo-arclength continuation procedure incorporated with bifurcation prediction scheme based on first order Lagrange matrix interpolation can detect the locations of simple bifurcation points and trace the secondary bifurcation paths with simple subspace projection strategy. Furthermore, a step-control technique based on the idea of shooting method proposed by Seydel can greatly improve the efficiency of the computational effort. A few numerical
experiments and results are presented for illustration.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT880507015
http://hdl.handle.net/11536/66169
显示于类别:Thesis