完整後設資料紀錄
DC 欄位語言
dc.contributor.authorJuang, Chia-Fengen_US
dc.contributor.authorHuang, Ren-Boen_US
dc.contributor.authorLin, Yang-Yinen_US
dc.date.accessioned2014-12-08T15:08:37Z-
dc.date.available2014-12-08T15:08:37Z-
dc.date.issued2009-10-01en_US
dc.identifier.issn1063-6706en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TFUZZ.2009.2021953en_US
dc.identifier.urihttp://hdl.handle.net/11536/6619-
dc.description.abstractThis paper proposes a recurrent self-evolving interval type-2 fuzzy neural network (RSEIT2FNN) for dynamic system processing. An RSEIT2FNN incorporates type-2 fuzzy sets in a recurrent neural fuzzy system in order to increase the noise resistance of a system. The antecedent parts in each recurrent fuzzy rule in the RSEIT2FNN are interval type-2 fuzzy sets, and the consequent part is of the Takagi-Sugeno-Kang (TSK) type with interval weights. The antecedent part of RSEIT2FNN forms a local internal feedback loop by feeding the rule firing strength of each rule back to itself. The TSK-type consequent part is a linear model of exogenous inputs. The RSEIT2FNN initially contains no rules; all rules are learned online via structure and parameter learning. The structure learning uses online type-2 fuzzy clustering. For the parameter learning, the consequent part parameters are tuned by a rule-ordered Kalman filter algorithm to improve learning performance. The antecedent type-2 fuzzy sets and internal feedback loop weights are learned by a gradient descent algorithm. The RSEIT2FNN is applied to simulations of dynamic system identifications and chaotic signal prediction under both noise-free and noisy conditions. Comparisons with type-1 recurrent fuzzy neural networks validate the performance of the RSEIT2FNN.en_US
dc.language.isoen_USen_US
dc.subjectDynamic system identificationen_US
dc.subjectonline fuzzy clusteringen_US
dc.subjectrecurrent fuzzy neural networks (RFNNs)en_US
dc.subjectrecurrent fuzzy systemsen_US
dc.subjecttype-2 fuzzy systemsen_US
dc.titleA Recurrent Self-Evolving Interval Type-2 Fuzzy Neural Network for Dynamic System Processingen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TFUZZ.2009.2021953en_US
dc.identifier.journalIEEE TRANSACTIONS ON FUZZY SYSTEMSen_US
dc.citation.volume17en_US
dc.citation.issue5en_US
dc.citation.spage1092en_US
dc.citation.epage1105en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000270591900009-
dc.citation.woscount40-
顯示於類別:期刊論文


文件中的檔案:

  1. 000270591900009.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。