完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Juang, Chia-Feng | en_US |
dc.contributor.author | Huang, Ren-Bo | en_US |
dc.contributor.author | Lin, Yang-Yin | en_US |
dc.date.accessioned | 2014-12-08T15:08:37Z | - |
dc.date.available | 2014-12-08T15:08:37Z | - |
dc.date.issued | 2009-10-01 | en_US |
dc.identifier.issn | 1063-6706 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/TFUZZ.2009.2021953 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/6619 | - |
dc.description.abstract | This paper proposes a recurrent self-evolving interval type-2 fuzzy neural network (RSEIT2FNN) for dynamic system processing. An RSEIT2FNN incorporates type-2 fuzzy sets in a recurrent neural fuzzy system in order to increase the noise resistance of a system. The antecedent parts in each recurrent fuzzy rule in the RSEIT2FNN are interval type-2 fuzzy sets, and the consequent part is of the Takagi-Sugeno-Kang (TSK) type with interval weights. The antecedent part of RSEIT2FNN forms a local internal feedback loop by feeding the rule firing strength of each rule back to itself. The TSK-type consequent part is a linear model of exogenous inputs. The RSEIT2FNN initially contains no rules; all rules are learned online via structure and parameter learning. The structure learning uses online type-2 fuzzy clustering. For the parameter learning, the consequent part parameters are tuned by a rule-ordered Kalman filter algorithm to improve learning performance. The antecedent type-2 fuzzy sets and internal feedback loop weights are learned by a gradient descent algorithm. The RSEIT2FNN is applied to simulations of dynamic system identifications and chaotic signal prediction under both noise-free and noisy conditions. Comparisons with type-1 recurrent fuzzy neural networks validate the performance of the RSEIT2FNN. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Dynamic system identification | en_US |
dc.subject | online fuzzy clustering | en_US |
dc.subject | recurrent fuzzy neural networks (RFNNs) | en_US |
dc.subject | recurrent fuzzy systems | en_US |
dc.subject | type-2 fuzzy systems | en_US |
dc.title | A Recurrent Self-Evolving Interval Type-2 Fuzzy Neural Network for Dynamic System Processing | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/TFUZZ.2009.2021953 | en_US |
dc.identifier.journal | IEEE TRANSACTIONS ON FUZZY SYSTEMS | en_US |
dc.citation.volume | 17 | en_US |
dc.citation.issue | 5 | en_US |
dc.citation.spage | 1092 | en_US |
dc.citation.epage | 1105 | en_US |
dc.contributor.department | 電子工程學系及電子研究所 | zh_TW |
dc.contributor.department | Department of Electronics Engineering and Institute of Electronics | en_US |
dc.identifier.wosnumber | WOS:000270591900009 | - |
dc.citation.woscount | 40 | - |
顯示於類別: | 期刊論文 |