标题: | 有机蒙特纳石/聚胺基甲酸酯奈米复合材料之制备与分析 Synthesis and Characterization of Organo-montmorillonite/Polyurethane Nanocomposites |
作者: | 田运宜 Yun. I. Tien 韦光华 K. H. Wei 材料科学与工程学系 |
关键字: | 奈米复合材料;聚胺基甲酸酯;nanocomposites;polyurethane |
公开日期: | 2000 |
摘要: | 为了改善聚胺基甲酸酯(PU)之机械及耐热性质,本论文将蒙特纳石的矽酸盐层以奈米尺寸分散在PU中,制备PU奈米复合材料;研究可分为两大部分:第一部分将有机蒙特纳石(BZD-Mont)经掺合分散在硬链段含量不同之PU中(PU39,PU50,PU63),探讨矽酸盐在不同硬链段含量PU中的分散情况及其性质变化;结果显示矽酸盐于PU内分散之均匀性随硬链段或蒙特纳石含量增加而下降。另外,因为板状矽酸盐的阻隔减低了硬链段间氢键程度,使得PU39、PU50和PU63三个系统中之硬链段氢键连结指数分别下滑19.7 %、34.1 %和36.5 %。而在机械性质部分,得知奈米级矽酸盐可补强PU;于PU39系统中,其杨氏模数、最大拉伸应力和断裂伸长率可分别增加至25.97 MPa、7.94 MPa 和610 %。关于该PU奈米复合材料之热性质,则发现矽酸盐并不影响软链段相玻璃转移点与硬链段相之熔点,但会减低硬链段相中微结晶的程度,于此同时,长范围规则排列之硬链段数量变多,使得△H2可增加17 J/g;另外因为矽酸盐会限制硬链段分子的运动,所以其T2随矽酸盐含量增加至多提升9 oC。而耐热性则因奈米矽酸盐保护了PU硬链段分子获得34 oC改善。 第二部分利用膨润剂制备出不同反应性的有机蒙特纳石(1OH-Mont,2OH-Mont,3OH-Mont),并将其当作仿链延伸剂连结PU39预聚合体,探讨有机蒙特纳石反应性高低与矽酸盐层分散形态间的关系;结果发现矽酸盐于PU39中之分布随膨润剂羟基数目增加或矽酸盐含量减少而愈显均匀,尤以3OH-Mont/PU39不规则排列的矽酸盐形态最为特别。再则,因为该反应型有机蒙特纳石扮演链延伸剂之角色,所以反应性较低者会阻碍预聚合体的链延伸反应,导致1OH-Mont/PU39中PU39分子量下降50 %。至于硬链段间氢键程度则同样因矽酸盐阻隔而减低,且此效应随蒙特纳石含量增加愈为显着,其最低值较纯PU39下降12 %。在PU39奈米复合材料机械性质的部分,矽酸盐层不规则排列之奈米矽酸盐可更有效补强PU39;以1wt % 3OH-Mont/PU39为例,杨氏模数、最大拉伸应力和断裂伸长率分别上升至28.03 MPa、23.62 MPa和1167 %。最后,分析其软、硬链段相玻璃转移过程,推测矽酸盐层藉氢键或膨润剂连结而分布在PU39中的硬链段相,进而保护硬链段分子延迟其裂解,使得PU39奈米复合材料之耐热温度和裂解活化能最多较纯PU39提高40 oC和17 kJ/mole。 Synthesis and Characterization of Organo-montmorillonite/Polyurethane Nanocomposites Student : Yun-I Tien Advisor : Dr. Kung-Hwa Wei Department of Material Science and Engineering National Chiao Tung University Abstract Two kinds of polyurethane nanoocmposites were synthesized and characterized. In the first part of the experiment, the montmorillonite modified by the benzidine (BZD) was dispersed in the polyurethane containing different hard segment ratios. It was found that the dispersion of silicate became poorer with the increasing amount of BZD-Mont and hard segment, evidenced by the X-ray and TEM results. Hydrogen bonding in the hard segments of the nanocomposites decreased with the increasing BZD-Mont contents regardless of the hard segment ratios, but reached plateau values at 5 wt % BZD-Mont concentration. The maximal reductions of the hydrogen bonding in the polyurethane nanocomposites ranged from 20 to 37 %, depending on the hard segment ratios as compared to that in the pure polyurethane. The maximal strength and the elongation at break of the polyurethane nanocomposites increased dramatically as compared to that of pristine polyurethane, with the maximal values occurred at 1 wt % BZD-Mont concentration. As concerned as the thermal characteristics of BZD-Mont/PU, the presence of less than 5 wt % layered silicates from BZD-Mont can result in hard segments having thermally more stable long-range-order and higher melting temperature, but a loss of crystallinity of hard segment in polyurethane. Additionally, the degradation temperature of the polyurethane nanocomposite was 40 oC higher than that of pure polyurethane. In the second part of the experiment, novel intercalated and exfoliated layered silicates/polyurethane were synthesized by using reactive swelling agent-modified-silicates as pseudo chain extenders for polyurethane prepolymer. The dispersion of layered silicates in polyurethane was found to be transformed from an intercalated to an exfoliated structure when the number of hydroxyl groups of the swelling agent increased as evidenced from the TEM and X-ray analyses. The improved morphology of the nanocomposites resulted in a substantial increase in their mechanical properties, despite variations in the molecular weight and in the extent of hydrogen bonding in the hard segment phase of polyurethane. In particular, a 34 % increase in Young’s modulus, a 1.6 times increase in the maximum stress and a 1.2 times increase in the elongation at break occurred in the nanocomposite of polyurethane containing 1 wt % tri-hydroxyl groups swelling agent modified silicates as compared to that of pristine polyurethane. Moreover, the heat resistance of polyurethane was enhanced by the nano-sized silicates around the hard segments, evidenced by the 39 oC increase in degradation temperature and 17 kJ/mole increase in the activation energy at 10 % conversion as compared with those of pristine polyurethane. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT890159007 http://hdl.handle.net/11536/66629 |
显示于类别: | Thesis |