Full metadata record
DC FieldValueLanguage
dc.contributor.author胡繼安en_US
dc.contributor.authorChi-An Huen_US
dc.contributor.author陳鄰安en_US
dc.contributor.authorLin-An Chenen_US
dc.date.accessioned2014-12-12T02:24:56Z-
dc.date.available2014-12-12T02:24:56Z-
dc.date.issued2000en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT890337011en_US
dc.identifier.urihttp://hdl.handle.net/11536/66762-
dc.description.abstract在單維度下,分位數區間有許多的應用。但在多維度的情形下,儘管多維度的分位數已被提出(Chaudhuri (1996)、Chen and Welsh (1999)),如此的多維度分位數並不能適當地定義出分位數區間。我們提出以平行四邊形區域為多維度分位數區域,與區域為橢圓相較,討論在常態分配、指數分配和卡方分配下的有效性。我們並以平行四邊形區域發展一些應用,其中深入探討多維度修飾後平均數的大樣本性質以及其效率。zh_TW
dc.description.abstractThere are many applications of the quantile interval for statistical inference in univariate distribution. Under multivariate dimension, although the multivariate quantile has been proposed (Chaudhuri(1996)、Chen and Welsh(1999)), the use of their quantiles for constructing multivariate region is not satisfactory. We propose a multivariate quantile region in the form of a parallelogram. Comparing with ellipsoid, we discuss the validity of the multivariate quantile regions under normal, exponential, and chi-square distribution. We also develop some applications of this parallel region, and study the multivariate trimmed mean constructed based on this region advancedly for its large sample property and efficiency.en_US
dc.language.isoen_USen_US
dc.subject多變量分位數區域zh_TW
dc.subject製程能力指標zh_TW
dc.subject平行區域zh_TW
dc.subject全距zh_TW
dc.subject分位數zh_TW
dc.subject修飾後平均數zh_TW
dc.subjectmultivariate quantile regionen_US
dc.subjectprocess capability indexen_US
dc.subjectparallel regionen_US
dc.subjectrangeen_US
dc.subjectquantileen_US
dc.subjecttrimmed meanen_US
dc.title平行多變量分位數區域zh_TW
dc.titleParallel Multivariate Quantile Regionen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis