Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Cheng-Kuanen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHuang, Hua-Minen_US
dc.contributor.authorHsu, D. Franken_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:08:44Z-
dc.date.available2014-12-08T15:08:44Z-
dc.date.issued2009-09-06en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.disc.2008.12.023en_US
dc.identifier.urihttp://hdl.handle.net/11536/6687-
dc.description.abstractA hamiltonian cycle C of a graph G is an ordered set < u(1), u(2,) ..., u(n(G)), u(1)> of vertices such that u(i) not equal u(j) for i not equal j and u(i) is adjacent to u(i+1) for every i is an element of {1, 2, ..., n(G) - 1} and u(n(G)) is adjacent to u(1), where n(G) is the order of G. The vertex u(1) is the starting vertex and u(i) is the ith vertex of C. Two hamiltonian cycles C(1) = < u(1), u(2), ..., u(n(G)), u(1)> and C(2) = < v(1), v(2), ..., v(n(G)), v(1)> of G are independent if u(1) = v(1) and u(i) not equal v(i) for every i is an element of {2, 3, ..., n(G)}. A set of hamiltonian cycles {C(1), C(2), ..., C(k)} of G is mutually independent if its elements are pairwise independent. The mutually independent hamiltonicity IHC(G) of a graph G is the maximum integer k such that for any vertex u of G there exist k mutually independent hamiltonian cycles of G starting at u. In this paper, the mutually independent hamiltonicity is considered for two families of Cayley graphs, the n-dimensional pancake graphs P(n) and the n-dimensional star graphs S(n). It is proven that IHC(P(3)) = 1, IHC(P(n)) = n - 1 if n >= 4, IHC(S(n)) = n - 2 if n is an element of {3, 4} and IHC(S(n)) = n - 1 if n >= 5. (C) 2009 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHamiltonianen_US
dc.subjectPancake networksen_US
dc.subjectStar networksen_US
dc.titleMutually independent hamiltonian cycles for the pancake graphs and the star graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2008.12.023en_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume309en_US
dc.citation.issue17en_US
dc.citation.spage5474en_US
dc.citation.epage5483en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000269600400028-
dc.citation.woscount8-
Appears in Collections:Articles


Files in This Item:

  1. 000269600400028.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.