Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Fuh-hwa Franklinen_US
dc.contributor.authorChen, Cheng-Lien_US
dc.date.accessioned2014-12-08T15:08:45Z-
dc.date.available2014-12-08T15:08:45Z-
dc.date.issued2009-09-01en_US
dc.identifier.issn0360-8352en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.cie.2007.12.021en_US
dc.identifier.urihttp://hdl.handle.net/11536/6699-
dc.description.abstractAn original data envelopment analysis (DEA) model is to evaluate each decision-making unit (DMU) with a set of most favorable weights of performance indices. The efficient DMUs obtained from the original DEA construct an efficient (best-practice) frontier. The original DEA can be considered to identify good (efficient) performers in the most favorable scenario. For the purpose of identifying bad performers such as bankrupt firms in the most unfavorable (worst-case) scenario., radial worst-practice frontier DEA (WPF-DEA) model in which the "worst efficient" DMUs construct a worst-practice frontier has been proposed. To identify bad performers together with the slack values we formulate another model called WPF-SBM. Then we develop the HypoSBM model to distinguish the worst performers from the bad ones. Finally, a solution approach is suggested to fully rank worst efficiencies in the worst-case scenario. (C) 2009 Published by Elsevier Ltd.en_US
dc.language.isoen_USen_US
dc.subjectData envelopment analysisen_US
dc.subjectWorst-case scenarioen_US
dc.subjectWorst-practice frontieren_US
dc.subjectWorst efficiencyen_US
dc.subjectSlack-based efficiency measureen_US
dc.titleThe worst-practice DEA model with slack-based measurementen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cie.2007.12.021en_US
dc.identifier.journalCOMPUTERS & INDUSTRIAL ENGINEERINGen_US
dc.citation.volume57en_US
dc.citation.issue2en_US
dc.citation.spage496en_US
dc.citation.epage505en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000269765700005-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000269765700005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.