Full metadata record
DC FieldValueLanguage
dc.contributor.authorChu, Hone-Jayen_US
dc.contributor.authorChang, Liang-Chengen_US
dc.date.accessioned2014-12-08T15:08:50Z-
dc.date.available2014-12-08T15:08:50Z-
dc.date.issued2009-09-01en_US
dc.identifier.issn1084-0699en_US
dc.identifier.urihttp://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000070en_US
dc.identifier.urihttp://hdl.handle.net/11536/6744-
dc.description.abstractThe Muskingum model is the most widely used method for flood routing in hydrologic engineering. However, the application of the model still suffers from a lack of an efficient method for parameter estimation. Particle swarm optimization (PSO) is applied to the parameter estimation for the nonlinear Muskingum model. PSO does not need any initial guess of each parameter and thus avoids the subjective estimation usually found in traditional estimation methods and reduces the likelihood of finding a local optimum of the parameter values. Simulation results indicate that the proposed scheme can improve the accuracy of the Muskingum model for flood routing. A case study is presented to demonstrate that the proposed scheme is an alternative way to estimate the parameters of the Muskingum model.en_US
dc.language.isoen_USen_US
dc.titleApplying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1061/(ASCE)HE.1943-5584.0000070en_US
dc.identifier.journalJOURNAL OF HYDROLOGIC ENGINEERINGen_US
dc.citation.volume14en_US
dc.citation.issue9en_US
dc.citation.spage1024en_US
dc.citation.epage1027en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000269061800014-
dc.citation.woscount24-
Appears in Collections:Articles


Files in This Item:

  1. 000269061800014.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.