標題: Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model
作者: Chu, Hone-Jay
Chang, Liang-Cheng
土木工程學系
Department of Civil Engineering
公開日期: 1-Sep-2009
摘要: The Muskingum model is the most widely used method for flood routing in hydrologic engineering. However, the application of the model still suffers from a lack of an efficient method for parameter estimation. Particle swarm optimization (PSO) is applied to the parameter estimation for the nonlinear Muskingum model. PSO does not need any initial guess of each parameter and thus avoids the subjective estimation usually found in traditional estimation methods and reduces the likelihood of finding a local optimum of the parameter values. Simulation results indicate that the proposed scheme can improve the accuracy of the Muskingum model for flood routing. A case study is presented to demonstrate that the proposed scheme is an alternative way to estimate the parameters of the Muskingum model.
URI: http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000070
http://hdl.handle.net/11536/6744
ISSN: 1084-0699
DOI: 10.1061/(ASCE)HE.1943-5584.0000070
期刊: JOURNAL OF HYDROLOGIC ENGINEERING
Volume: 14
Issue: 9
起始頁: 1024
結束頁: 1027
Appears in Collections:Articles


Files in This Item:

  1. 000269061800014.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.