Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Tsung-Ien_US
dc.contributor.authorWang, Yun-Jenen_US
dc.date.accessioned2014-12-08T15:08:50Z-
dc.date.available2014-12-08T15:08:50Z-
dc.date.issued2009-09-01en_US
dc.identifier.issn0378-3758en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jspi.2009.02.008en_US
dc.identifier.urihttp://hdl.handle.net/11536/6745-
dc.description.abstractIn this paper, we propose a multivariate t regression model with its mean and scale covariance modeled jointly for the analysis of longitudinal data. A modified Cholesky decomposition is adopted to factorize the dependence structure in terms of unconstrained autoregressive and scale innovation parameters. We present three distinct representations of the log-likelihood function of the model and study the associated properties. A computationally efficient Fisher scoring algorithm is developed for carrying out maximum likelihood estimation. The technique for the prediction of future responses in this context is also investigated. The implementation of the proposed methodology is illustrated through two real-life examples and extensive simulation studies. (C) 2009 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectCovariance structureen_US
dc.subjectMaximum likelihood estimatesen_US
dc.subjectReparameterizationen_US
dc.subjectRobustnessen_US
dc.subjectOutliersen_US
dc.subjectPredictionen_US
dc.titleA robust approach to joint modeling of mean and scale covariance for longitudinal dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jspi.2009.02.008en_US
dc.identifier.journalJOURNAL OF STATISTICAL PLANNING AND INFERENCEen_US
dc.citation.volume139en_US
dc.citation.issue9en_US
dc.citation.spage3013en_US
dc.citation.epage3026en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000267956600013-
dc.citation.woscount6-
Appears in Collections:Articles


Files in This Item:

  1. 000267956600013.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.