完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHwang, Ruey-Chingen_US
dc.contributor.authorCheng, K. F.en_US
dc.contributor.authorLee, Cheng-Fewen_US
dc.date.accessioned2014-12-08T15:08:53Z-
dc.date.available2014-12-08T15:08:53Z-
dc.date.issued2009-09-01en_US
dc.identifier.issn1524-1904en_US
dc.identifier.urihttp://dx.doi.org/10.1002/asmb.735en_US
dc.identifier.urihttp://hdl.handle.net/11536/6766-
dc.description.abstractFor multiple-class prediction, a frequently used approach is based on ordered probit model. We show that this approach is not optimal in the sense that it is not designed to minimize the error rate of the prediction. Based upon the works by Altman (J. Finance 1968; 23:589-609), Ohlson (J. Accounting Res. 1980; 18:109-131), and Begley et al. (Ret Accounting Stud. 1996, 1:267-284) on two-class prediction, we propose a modified ordered probit model. The modified approach depends on an optimal cutoff value and can be easily applied in applications. An empirical study is used to demonstrate that the prediction accuracy rate of the modified classifier is better than that obtained from usual ordered probit model. In addition, we also show that not only the usual accounting variables are useful for predicting issuer credit ratings, market-driven variables and industry effects are also important determinants. Copyright (C) 2008 John Wiley & Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectindustry effecten_US
dc.subjectissuer credit ratingen_US
dc.subjectmarket-driven variableen_US
dc.subjectordered probit modelen_US
dc.subjectoptimal cutoff valueen_US
dc.subjectselection biasen_US
dc.titleOn multiple-class prediction of issuer credit ratingsen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/asmb.735en_US
dc.identifier.journalAPPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRYen_US
dc.citation.volume25en_US
dc.citation.issue5en_US
dc.citation.spage535en_US
dc.citation.epage550en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000271394300005-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000271394300005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。