完整後設資料紀錄
DC 欄位語言
dc.contributor.author余啟哲en_US
dc.contributor.authorChi-Jer Yuen_US
dc.contributor.author李榮耀en_US
dc.contributor.authorJong-Eao Leeen_US
dc.date.accessioned2014-12-12T02:26:16Z-
dc.date.available2014-12-12T02:26:16Z-
dc.date.issued2000en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT890507001en_US
dc.identifier.urihttp://hdl.handle.net/11536/67681-
dc.description.abstract我們發展一個新的演算法以便較有效率地尋找動力系統中的類週期解,它能從一個 Hopf 分歧點開始平順地追蹤出整個類週期解群。我們以數個例子的測試來證明它的適用性,並對其中的 2-mode damped, driven sine-Gordon ODE 將有完整的分析。zh_TW
dc.description.abstractWe develop an algorithm to identify invariant curves efficiently. In dynamical systems, it helps do continuations of branches of quasi-periodic solutions smoothly in bifurcation diagrams. Several examples, especially for the 2-mode damped, driven sine-Gordon ODE, are demonstrated to provide the numerical evidence for the versatility of the algorithm.en_US
dc.language.isoen_USen_US
dc.subject類週期的zh_TW
dc.subject不變的zh_TW
dc.subject環面zh_TW
dc.subject演算法zh_TW
dc.subject分歧zh_TW
dc.subject數值的zh_TW
dc.subjectquasiperiodicen_US
dc.subjectinvarianten_US
dc.subjecttorien_US
dc.subjectalgorithmen_US
dc.subjectbifurcationen_US
dc.subjectnumericalen_US
dc.title尋求不變集合的新演算法zh_TW
dc.titleAn Algorithm to Approach Invariant Curvesen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文