Full metadata record
DC FieldValueLanguage
dc.contributor.authorHo, Tung-Yangen_US
dc.contributor.authorLin, Cheng-Kuanen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:08:54Z-
dc.date.available2014-12-08T15:08:54Z-
dc.date.issued2009-09-01en_US
dc.identifier.issn0893-9659en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.aml.2009.01.058en_US
dc.identifier.urihttp://hdl.handle.net/11536/6773-
dc.description.abstractin this work, we concentrate on those n-vertex graphs G with n >= 4 and (e) over bar <= n - 4. Let P(1) = < u(1), u(2),..., u(n)) and P(2) = (v(1), v(2),..., v(n)) be any two hamiltonian paths of G. We say that P(1) and P(2) are orthogonal if u(1) = v(1), u(n) = v(n), and u(q) not equal v(q) for q is an element of {2, n - 1}. We say that a set of hamiltonian paths {P(1), P(2),..., P(s)} of G are mutually orthogonal if any two distinct paths in the set are orthogonal. We will prove that there are at least two orthogonal hamiltonian paths of G between any two different vertices. Furthermore, we classify the cases such that there are exactly two orthogonal hamiltonian paths of G between any two different vertices. Aside from these special cases, there are at least three mutually orthogonal hamiltonian paths of G between any two different vertices. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHamiltonianen_US
dc.subjectHamiltonian connecteden_US
dc.subjectInterconnection networksen_US
dc.titleMutually orthogonal hamiltonian connected graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.aml.2009.01.058en_US
dc.identifier.journalAPPLIED MATHEMATICS LETTERSen_US
dc.citation.volume22en_US
dc.citation.issue9en_US
dc.citation.spage1429en_US
dc.citation.epage1431en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000267964200023-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000267964200023.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.