完整後設資料紀錄
DC 欄位語言
dc.contributor.author曾吉祥en_US
dc.contributor.authorChi-shiang Tzengen_US
dc.contributor.author廖志中en_US
dc.contributor.author王承德en_US
dc.contributor.authorDr. Jyh-Jong Liaoen_US
dc.contributor.authorDr. Cheng-Der Wangen_US
dc.date.accessioned2014-12-12T02:27:03Z-
dc.date.available2014-12-12T02:27:03Z-
dc.date.issued2001en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT900015079en_US
dc.identifier.urihttp://hdl.handle.net/11536/68120-
dc.description.abstract本文係根據異向性彈性力學理論,解析出有關承受點荷重後,無限與半無限空間之非均質且橫向等向性岩體之位移與應力解;所分析的橫向等向性岩體之彈性對稱面與水平受力面平行,而五個彈性常數(E、 、 、n、 )中的水平楊氏係數(E)、垂直楊氏係數( )及垂直剪力模數( )係假設隨著覆土(岩)深度之增加而呈指數函數增加;其所推導出的解透過數值積分運算,可與水平之均質橫向等向性岩體之特例相互比較,以檢視其異質性與異向性的程度造成橫向等向性岩體內位移與應力分佈之影響。zh_TW
dc.description.abstractBased on the theory of anisotropic elasticity, the solutions of displacements and stresses in nonhomogrneous and transversely isotropic full/half spaces subjected to a point load are presented in this thesis. The plane of transversely isotropy is assumed to be parallel to the horizontal loading surface. Three elastic constants 、 、 in the form of exponential increase with the increase of depth. The derved solutions can be simplified to campare with those existed solutions of homogeneous and transversely isotropic full/half spaces. Besides, a series of parametric study was conducted to investigate the degree of nonhomogeneity on the distributions of displacements and stresses induced by the applied point load in the isotropic/transversely isotropic full/half spaces.en_US
dc.language.isozh_TWen_US
dc.subject異向性zh_TW
dc.subject異質性zh_TW
dc.subject橫向等向性zh_TW
dc.subject半無限空間zh_TW
dc.subject點荷重zh_TW
dc.subjectanisotropicen_US
dc.subjectnonhomogeneousen_US
dc.subjecttransversely isotropicen_US
dc.subjecthalf spaceen_US
dc.subjectpoint loaden_US
dc.title彈性常數隨深度呈指數變化之橫向等向性半無限空間承受點荷重後之位移與應力zh_TW
dc.titleDisplacements and Stresses due to a point load in a Transversely Isotropic half-spaces whose elastic constants vary exponentially with depthen_US
dc.typeThesisen_US
dc.contributor.department土木工程學系zh_TW
顯示於類別:畢業論文