Full metadata record
DC FieldValueLanguage
dc.contributor.author周家任en_US
dc.contributor.authorChou,Chia-Jenen_US
dc.contributor.author蘇朝墩en_US
dc.contributor.authorSu,Chao-Tonen_US
dc.date.accessioned2014-12-12T02:27:07Z-
dc.date.available2014-12-12T02:27:07Z-
dc.date.issued2001en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT900031052en_US
dc.identifier.urihttp://hdl.handle.net/11536/68172-
dc.description.abstract在統計資料分析中,必須先已知樣本資料的統計機率分配為何,才能瞭解樣本資料所提供資訊,以利於作出進一步的正確決策分析。傳統上的統計機率分配辨識方法以非參數統計中的適合度檢定為主。然而,適合度檢定亦有其限制,如:樣本個數太少無法作出精確的辨識、分組組數影響辨識結果。有鑑於此,本研究提出應用類神經網路來建構一套統計機率分配之辨識方法,並與傳統統計適合度檢定作比較。此外,本研究舉一數據分析,來說明所提出之應用類神經網路的辨識方法,結果顯示本研究所提出的方法具有高度辨識正確率及時效性。zh_TW
dc.description.abstractIn Statistic data analysis, we first have to know what kind of statistic probability distribution the data obeys; therefore, we can understand what information the data provides and make a right decision making. In general, a non-parameteric test for goodness of fit is used in distribution recognition. However, there are several constraints and limitation. For example, due to the inadequacy of sample, precise recognition can not be made. In addition, the numbers to divide into groups influence the results. This research presents an effective procedure capable of recognition statistic probability distribution by employing neural network. The proposed approach is compared with non-parameteric test for goodness of fit. A data analysis involving the distribution recognition demonstrates high recognition rate and effectiveness by our proposed approach.en_US
dc.language.isozh_TWen_US
dc.subject非參數統計zh_TW
dc.subject適合度檢定zh_TW
dc.subject類神經網路zh_TW
dc.subjectnon-parameteric statisticsen_US
dc.subjecttest for goodness of fiten_US
dc.subjectneural networken_US
dc.title應用類神經網路於統計機率分配辨識之研究zh_TW
dc.titleUaing Neural Networks for Statistic Probability Distribution Recognitionen_US
dc.typeThesisen_US
dc.contributor.department工業工程與管理學系zh_TW
Appears in Collections:Thesis