Full metadata record
DC FieldValueLanguage
dc.contributor.author曾聖澧en_US
dc.contributor.author黃信誠en_US
dc.contributor.author陳志榮en_US
dc.date.accessioned2014-12-12T02:27:33Z-
dc.date.available2014-12-12T02:27:33Z-
dc.date.issued2001en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT900337004en_US
dc.identifier.urihttp://hdl.handle.net/11536/68384-
dc.description.abstract本論文提出多層解析混合自迴歸樹狀空間模型、及其預測空間資料的快速 演算法。此一新方法根源於自迴歸樹狀模型,但單一自迴歸樹狀模型的缺點是其預測值會有塊狀叢聚現象。本文提出的混合自迴歸樹狀空間模型,具有平穩的空間共變異結構,因此其預測值不會出現塊狀現象。根據該模型可導證出一快速演算法用於處理大量空間資料,當資料中有遺漏值時,並不會影響其計算速度。該模型的另一項優點是可以 EM 演算法迭代求得其參數的最大概似估計量。此外,在實際問題中,選擇適合的模型對於預測舉足輕重,但相關文獻卻付之闕如。本文將討論如何以加權最小平方判則進行模型篩選。zh_TW
dc.description.abstractIn this article, we propose an autoregressive tree-structured mixture model and develop a computationally efficient algorithm for spatial prediction. The algorithm allows us to handle a huge dataset, even when there are missing observations. The proposed mixture model has a stationary covariance structure and is free from blocky artifacts in prediction, which may be produced by a single autoregressive tree-structured model. We shall also show how to obtain the maximum likelihood estimators of the model parameters using an EM algorithm, and develop a model-selection criterion, which has not been addressed in the past literature.en_US
dc.language.isoen_USen_US
dc.subject多層解析資料分析zh_TW
dc.subject樹狀模型zh_TW
dc.subject大量資料zh_TW
dc.subject時空模型zh_TW
dc.subject空間統計zh_TW
dc.subject臭氧zh_TW
dc.title多層解析混合自迴歸樹狀空間模型zh_TW
dc.titleAutoregressive Tree-Structured Mixture Spatial Modelsen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis