Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 曾聖澧 | en_US |
dc.contributor.author | 黃信誠 | en_US |
dc.contributor.author | 陳志榮 | en_US |
dc.date.accessioned | 2014-12-12T02:27:33Z | - |
dc.date.available | 2014-12-12T02:27:33Z | - |
dc.date.issued | 2001 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT900337004 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/68384 | - |
dc.description.abstract | 本論文提出多層解析混合自迴歸樹狀空間模型、及其預測空間資料的快速 演算法。此一新方法根源於自迴歸樹狀模型,但單一自迴歸樹狀模型的缺點是其預測值會有塊狀叢聚現象。本文提出的混合自迴歸樹狀空間模型,具有平穩的空間共變異結構,因此其預測值不會出現塊狀現象。根據該模型可導證出一快速演算法用於處理大量空間資料,當資料中有遺漏值時,並不會影響其計算速度。該模型的另一項優點是可以 EM 演算法迭代求得其參數的最大概似估計量。此外,在實際問題中,選擇適合的模型對於預測舉足輕重,但相關文獻卻付之闕如。本文將討論如何以加權最小平方判則進行模型篩選。 | zh_TW |
dc.description.abstract | In this article, we propose an autoregressive tree-structured mixture model and develop a computationally efficient algorithm for spatial prediction. The algorithm allows us to handle a huge dataset, even when there are missing observations. The proposed mixture model has a stationary covariance structure and is free from blocky artifacts in prediction, which may be produced by a single autoregressive tree-structured model. We shall also show how to obtain the maximum likelihood estimators of the model parameters using an EM algorithm, and develop a model-selection criterion, which has not been addressed in the past literature. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 多層解析資料分析 | zh_TW |
dc.subject | 樹狀模型 | zh_TW |
dc.subject | 大量資料 | zh_TW |
dc.subject | 時空模型 | zh_TW |
dc.subject | 空間統計 | zh_TW |
dc.subject | 臭氧 | zh_TW |
dc.title | 多層解析混合自迴歸樹狀空間模型 | zh_TW |
dc.title | Autoregressive Tree-Structured Mixture Spatial Models | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 統計學研究所 | zh_TW |
Appears in Collections: | Thesis |