Full metadata record
DC FieldValueLanguage
dc.contributor.author林玫苓en_US
dc.contributor.authorMei-Ling LinWe proposed a Welsh’s type trimmed mean (Welsh (1987)) for the nonlinear regression model of general type (without assuming the existence of the intercept term). The large sample study reveals that it carries over the asymptotic properties of efficiency and robustness from the trimmed mean of the location model to the nonlinear regression model. Beside, Monte Carlo simulation and real data analysis are also provided. A large sample inference methodology is also provided.en_US
dc.contributor.author陳鄰安en_US
dc.contributor.authorDr. Lin-An Chenen_US
dc.date.accessioned2014-12-12T02:27:34Z-
dc.date.available2014-12-12T02:27:34Z-
dc.date.issued2001en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT900337017en_US
dc.identifier.urihttp://hdl.handle.net/11536/68396-
dc.description.abstract我們建議使用Welsh截斷平均數,來估計一般型態非線性迴歸模型的參數(不去假設存在截距項)。此篇論文中,我們將呈現在非線性迴歸模型下,Welsh截斷平均數的大樣本性質顯示出其近似位置模型(location model)截斷平均數的效益度及穩健度。除此之外,我們提出蒙地卡羅(Monte Carlo)模擬;實際的資料分析及大樣本推論。 關鍵字:非線性迴歸;截斷平均數。zh_TW
dc.description.abstractWe proposed a Welsh’s type trimmed mean (Welsh (1987)) for the nonlinear regression model of general type (without assuming the existence of the intercept term). The large sample study reveals that it carries over the asymptotic properties of efficiency and robustness from the trimmed mean of the location model to the nonlinear regression model. Beside, Monte Carlo simulation and real data analysis are also provided. A large sample inference methodology is also provided. Key words:Nonlinear regression ; trimmed mean.en_US
dc.language.isoen_USen_US
dc.subject非線性迴歸zh_TW
dc.subject截斷平均數zh_TW
dc.subjectNonlinear regressionen_US
dc.subjectTrimmed meanen_US
dc.title非線性迴歸模型的Welsh截斷平均數zh_TW
dc.titleWelsh's Trimmed Mean for the Nonlinear Regression Modelen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis