Full metadata record
DC FieldValueLanguage
dc.contributor.author黃薰毅en_US
dc.contributor.authorHuang, Hsun-YIen_US
dc.contributor.author王啟旭en_US
dc.contributor.authorWang, Chi-Hsuen_US
dc.date.accessioned2014-12-12T02:27:42Z-
dc.date.available2014-12-12T02:27:42Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009212554en_US
dc.identifier.urihttp://hdl.handle.net/11536/68501-
dc.description.abstract由於控制器的老化而造成控制系統的出錯是很普遍的,而這種情況發生,常常因為某些原因,原本的控制器很難被修復。本篇論文探討以動態類神經網路控制器取代原本控制器的可行性來設法解決上述問題。我們以霍普菲爾類神經網路控制器做為動態類神經網路控制器。先以最陡坡降演算法離線訓練霍普菲爾類神經網路的網路權重值使得霍普菲爾類神經網路的輸出能模仿原先的控制器。訓練完成之後再將該霍普菲爾類神經網路當作控制系統的即時控制器。我們以倒單擺系統及球桿系統來驗證該霍普菲爾類神經網路控制器的效果。模擬的結果顯示即使控制系統在和訓練時有不同的初始條件,該霍普菲爾類神經網路控制器依然可以模仿原先的控制器並達到令人滿意的效能。zh_TW
dc.description.abstractFaults due to the aging of a controller for a control system are very common; once they happen, the controller is quite difficult to be repaired for some reasons. To solve this problem, in this thesis, we discuss the feasibility of replacing the existing controller with a dynamical neural network (DNN) controller. A Hopfield neural network (HNN) controller is used as the DNN controller. The weightings of the HNN are first trained off line by the steepest descent algorithm to make the output of the HNN can mimic the existing controller. After the training is completed, the HNN is applied to the control system as a real-time controller. An inverted pendulum system (IPS) and a ball and beam system (BABS) are used to examine the effectiveness of the proposed HNN controller. The simulation results show that even with the initial condition different from that in the training data, the proposed HNN controller can mimic the existing controller and achieve favorable performance.en_US
dc.language.isoen_USen_US
dc.subject類神經網路zh_TW
dc.subject類神經網路控制zh_TW
dc.subject動態類神經網路zh_TW
dc.subject霍普菲爾類神經網路zh_TW
dc.subject倒單擺zh_TW
dc.subject球桿系統zh_TW
dc.subject控制非線性系統zh_TW
dc.subject非線性控制zh_TW
dc.subjectneural networken_US
dc.subjectneural network controlleren_US
dc.subjectdynamical neural networken_US
dc.subjectHopfield neural networken_US
dc.subjectHNNen_US
dc.subjectIPSen_US
dc.subjectball and beamen_US
dc.subjectDNNen_US
dc.title動態類神經網路控制系統之設計及其應用zh_TW
dc.titleOn the Design of Dynamical Neural Network Controller with Its Applicationsen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 255401.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.