標題: | 利用公車GPS定位資料推估路段行車速率之研究 The Study of Using GPS Data of Buses to Estimate the Average Speed in a Link |
作者: | 張惠汶 Hui-Wen Chang 王晉元 Jin-Yuan Wang 運輸與物流管理學系 |
關鍵字: | 旅行時間預估;速率推估;探針車;Travel Time Estimation;Speed Estimation;Probe vehicle |
公開日期: | 2001 |
摘要: | 在智慧型運輸系統的發展中,即時的路況資訊是其子系統先進用路人資訊系統(Advanced Traveler Information Systems, ATIS)一項基本的需求。國內不論是在都會區中或是在城際間的各項活動都很頻繁,對於路況資訊需求日切。為了提供這項最基本的資訊,世界各國無不利用各種方法來收集此類資訊。其中一種方法是,利用在交通流(traffic flow)中行駛之裝有GPS配備之車輛來收集資料。考慮國內環境,利用探針車輛收集路況資訊,可說是一個在短期內可行,同時既有效率又即時的方式。
本研究利用公車的在行駛中傳回之GPS定位資料,發展一套資料處理方式,推估路段中之速率,做為路段速率資訊提供之用。然而公車並非專屬的探針車輛,有其主要的載客任務需執行,所傳回來的速率資料必需加以處理,才能提供正確資訊。本研究發展資料處理模式,主要包括兩個部份,一為資料過濾模式,主要是在公車站牌與路口位置設定停等區,配合公車速率資料型態,自訂過濾規則,以濾除公車上下客、路口紅燈停等之低速資料。另一為資料切割模式,此模式主要以統計上改變點分析方法,找出一切割點,使切割點至目前更新時間之間的資料是相似的。
為了解本研究所發展模式之效果,本研究進行實例之測試,以新竹市光復路往市區方向建新路口至建中路口為例,進行完整的模式分析,包括資料的收集、資料過濾模式的處理、資料切割模式的處理、路段中速率的推估。分析的結果,在資料過濾模式與資料切割模式方面均能達到所期望之功能。然而以公車做為探針車輛,在速率推估方面,有低估或高估的現象,較不穩定,而由於實例調查所記錄的資訊並不完整,無從推測其造成原因。
本研究所發展之模式,有助於提升現有裝有GPS車隊以及來將加裝GPS之車隊之GPS的附加價值,取代偵測器的設置並增加路況收集的涵蓋率。 Real-time travel information is becoming increasingly important in many intelligent transportation system (ITS) applications. There are many approaches used to collect real-time travel information. One of them relies on instrumented vehicles traveling in the traffic stream, also known as probe vehicles. Consider the situations of Taiwan, using probe vehicles to collect real-time travel information is an effective and efficient approach. This thesis proposes a data processing model to process the real-time travel data collected by the buses instrumented with GPS, and estimate the average speed in a link. However the buses have their main missions to do, such as carrying passengers, we must filter out the unneeded data to provide accurate travel information. The data processing model includes two parts. One is the data filtering model to filter out the un-normal low speeds resulted from stops for collecting passengers or red light. The other is the data-cutting model. This model using the change point analysis of statistic theory to find a cutting point where the data has significant difference. In order to evaluate the model, a case study concerning the Guang-Fu Rd. a major road in Hsin-Chu is performed. The result shows that the data filtering model and the data-cutting model can work well. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT900423010 http://hdl.handle.net/11536/68675 |
Appears in Collections: | Thesis |