Full metadata record
DC FieldValueLanguage
dc.contributor.author林鎮源en_US
dc.contributor.authorJean-Yuan Linen_US
dc.contributor.author宋開泰en_US
dc.contributor.authorKai-Tai Songen_US
dc.date.accessioned2014-12-12T02:28:06Z-
dc.date.available2014-12-12T02:28:06Z-
dc.date.issued2004en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009212578en_US
dc.identifier.urihttp://hdl.handle.net/11536/68745-
dc.description.abstract本論文之主旨在以行為融合的方法設計機器人之導航控制系統。由於在週遭環境情況類似下,行為架構模式的機器人其輸出行為表現的融合比例應該也會類似;本論文提出以一啟發性模糊類神經網路設計行為融合比例,文中首先設計閃避障礙物、目標物追蹤、沿牆行走等三個行為。藉由超音波感測器收集周圍的環境資訊,作為個別行為模糊控制器的輸入,以決定在不同的環境資訊下,各行為的輸出表現。接□透過類神經網路設計一行為融合架構,來決定機器人在當時環境中之行為融合比重。由環境資訊與所建立之規則表中各典型環境的相似程度,能即時決定機器人導航的行為融合比例。經由電腦模擬與實際導航實驗,驗證本設計具有令人滿意的導航功效。zh_TW
dc.description.abstractThe thesis presents a design of behavior-fusion architecture for mobile robot navigation. We first design three behaviors for robot navigation, including obstacle avoidance, wall following, and goal seeking using fuzzy-logic control approach. Then, the fusion weight of each behavior is determined by using the proposed behavior-fusion neural network. The neural network maps the current environment sensor data to suitable fusion weights. Both computer simulation and practical experiments verify the effectiveness of the method.en_US
dc.language.isozh_TWen_US
dc.subject行為架構zh_TW
dc.subject行為融合zh_TW
dc.subject機器人zh_TW
dc.subject模糊控制zh_TW
dc.subjectbehavior-baseden_US
dc.subjectbehavior coordinationen_US
dc.subjectroboten_US
dc.subjectfuzzy controlen_US
dc.title移動式機器人之行為融合控制器設計zh_TW
dc.titleDesign of a Behavior-Fusion Controller for Mobile Robot Navigationen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 257801.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.