完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Tsaipeien_US
dc.date.accessioned2014-12-08T15:09:03Z-
dc.date.available2014-12-08T15:09:03Z-
dc.date.issued2009-08-01en_US
dc.identifier.issn1063-6706en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TFUZZ.2008.924360en_US
dc.identifier.urihttp://hdl.handle.net/11536/6886-
dc.description.abstractIn this paper, we present a new type of alternating-optimization- based possibilistic c-shell algorithm for clustering-template- based shapes. A cluster prototype consists of a copy of the template after translation, scaling, rotation, and/or affine transformations. This extends the capability of shell clustering beyond a few standard geometrical shapes that have been in the literature so far. We use a number of 2-D datasets, consisting of both synthetic and real-world images, to illustrate the capability of our algorithm in detecting generic-template-based shapes in images. We also describe a progressive clustering procedure aimed to relax the requirements for a known number of clusters and good initialization, as well as new performance measures of shell-clustering algorithms.en_US
dc.language.isoen_USen_US
dc.subjectAlternating optimization (AO)en_US
dc.subjectobject detectionen_US
dc.subjectpossibilistic clusteringen_US
dc.subjectprogressive clusteringen_US
dc.subjectshape detectionen_US
dc.subjectshell clusteringen_US
dc.subjecttemplate matchingen_US
dc.titlePossibilistic Shell Clustering of Template-Based Shapesen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TFUZZ.2008.924360en_US
dc.identifier.journalIEEE TRANSACTIONS ON FUZZY SYSTEMSen_US
dc.citation.volume17en_US
dc.citation.issue4en_US
dc.citation.spage777en_US
dc.citation.epage793en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000268527100004-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000268527100004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。