标题: 小波在解电磁积分方程式之研究
Exploration of Wavelets in Solving Electromagnetic Integral Equations
作者: 陈志明
Chih-Ming Chen
唐震寰
Jenn-Hwan Tarng
电信工程研究所
关键字: 小波;积分方程式;动差解法;稀疏度;小波-基底方法;可见能量;条件数;张量积分方程式;wavelet;integral equation;method of moments;sparsity;wavelet-based method;visible energy;condition number;tensor integral equation
公开日期: 2001
摘要: 本论文首先探讨一些小波应用在电磁积分方程式的基本理论和结果,使用以小波为基底的方法,来解电磁积分方程式,能有效地将传统动差解法(method of moments)之满矩阵稀疏化,进而节省巨额计算量和时间,而且不会牺牲解的精确度。在电磁散射问题之数值结果显示,对于动电积分方程式,以离散小波转换(discrete wavelet transform)之阻抗矩阵之元素将可以稀疏至O(N2) (0<□<1);而以离散小波封包(discrete wavelet packet)的方法,将可进一步稀疏至O(N4/3)。
接着,我们成功地将此方法运用在3度空间的生物电磁工程上。利用小波-基底(wavelet-based)方法来解一个张量积分方程式(tensor integral equation),可以有效率地求出生物组织或大脑对电磁波吸收程度。我们发现使用这些方法比起传统的动差解法能够减少运算数目超过一个位数以上,当然可以减少计算时间和记忆体之需求。
其次,我们开发一个新的小波观念-“可见能量(visible energy)”,定义为频域内之单一母小波(mother wavelet),在可见区内(kx≤k0),所有不同解析尺度(scale)小波中,任一个位移(translation)小波之能量和。藉此定量分析之方式,能够事先找寻最适当的小波来解电磁散射之问题。利用小波可见能量有两点好处(1)可以节省大量选择适当小波的时间,以达到最稀疏化之电磁阻抗矩阵的目的(2)可以帮助研究人员在开发新的小波种类时一个相当有用的标准,来判断所发展的小波是否设计良好。因此,我们利用小波可见能量所开发的定量分析方式,对于有兴趣研究小波的人员将会有很大的帮助。
除此之外,我们更进一步探讨非正交小波之条件数(condition number)与可见能量在解电磁散射问题时,对于计算时间所造成的影响。我们发现较小可见能量之非正交小波会产生较大的条件数,既然较大的条件数,会导致病态式(ill-conditioning)小波基底转换矩阵之产生,该矩阵将产生较多的迭代数(iterations),反而可能需要花费较多的计算时间来求解,抵销了即使有较好的可见能量所形成较好的矩阵稀疏程度所带来的好处。
论文最后,我们指出未来数个可以更深入探讨的研究课题和相关的小波应用。
In this thesis, we first study some preliminary theory and results on the application of wavelets to electromagnetic integral equation. The dense matrix resulting from an integral operator can be made less dense using wavelet-based methods with thresholding techniques to attain an arbitrary degree of solution accuracy. Numerical results to EM scattering problems has been shown that for electrodynamic integral equations with oscillatory kernel, the transformed matrices have about O(□N2) (0<□<1) nonzero elements or O(N4/3) nonzero elements when it is applied the discrete wavelet transform (DWT) method or the discrete wavelet packet method (DWP), respectively.
A new application to 3-dimentional biological problems is also presented. A tensor integral equation in conjugation with wavelet-based method can effectively solve electromagnetic absorption in human brains. It is found that using these approaches can reduce operation numbers more than one order to compare with that of traditional MoM. It saves lots of computation time and memory requirements.
Next, we exploit a novel concept of “visible energy” for a criterion to choose the suitable wavelets in solving the electrodynamic scattering problems. The visible energy is defined as the energy of all dilations of a single mother wavelet for an arbitrary translation in the spectral domain over the entire visible region in which the spatial frequency is smaller than the free-space spatial-frequency (wavenumber). There are two main advantages in using the visible energy of wavelets: (1) It can save a lot of computing time in choosing proper wavelets to solve EM integral problems; (2) It can be a useful criterion for judging the wavelet whether is well-designed or not when researchers develop a new wavelet. This quantitative concept will be very helpful to those who interested in the study of wavelets.
Additionally, we further investigate the effects of condition number and visible energy on computation time in solving electromagnetic scattering problems by using nonorthogonal wavelets. It is found that the smaller visible energy of nonorthogonal wavelet produces higher condition number. Since the large condition numbers result in ill-conditioning wavelet basis transformed matrix, the matrix will lead to more iterations and may cost much computation time. This effect may cancel any benefits from higher sparsity obtained by smaller visible energy of nonorthogonal wavelets.
Finally, we pinpointed several possible extensions and applications for further studies.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT900435119
http://hdl.handle.net/11536/68997
显示于类别:Thesis