標題: Asymptotic phases in a cell differentiation model
作者: Friedman, Avner
Kao, Chiu-Yen
Shih, Chih-Wen
應用數學系
Department of Applied Mathematics
關鍵字: Cell differentiation;Th1/Th2 cells;Conservation law;Multistationary;Integro-differential equation;Transcription factors
公開日期: 1-八月-2009
摘要: T cells of the immune system, upon maturation, differentiate into either Th1 or Th2 cells that have different functions. The decision to which cell type to differentiate depends on the concentrations of transcription factors T-bet (x(1)) and GATA-3 (x(2)). The population density of the T cells, phi(t, x(1), x(2)), satisfies a conservation law partial derivative phi/partial derivative t + (partial derivative/partial derivative x(1))(f(1)phi) + (partial derivative/partial derivative x(2))(f(2)phi) = g phi where f(i) depends on (t, x(1), x(2)) and, in a nonlinear nonlocal way, on phi. It is proved that, as t -> infinity, (t, x(1), x(2)) converges to a linear combination of 1, 2, or 4 Dirac measures. Numerical simulations and their biological implications are discussed. (C) 2009 Elsevier Inc. All rights reserved.
URI: http://dx.doi.org/10.1016/j.jde.2009.03.033
http://hdl.handle.net/11536/6918
ISSN: 0022-0396
DOI: 10.1016/j.jde.2009.03.033
期刊: JOURNAL OF DIFFERENTIAL EQUATIONS
Volume: 247
Issue: 3
起始頁: 736
結束頁: 769
顯示於類別:期刊論文


文件中的檔案:

  1. 000266642000003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。