完整后设资料纪录
DC 栏位 | 值 | 语言 |
---|---|---|
dc.contributor.author | 陈弘虎 | en_US |
dc.contributor.author | Hong-Hu Chen | en_US |
dc.contributor.author | 萧国模 | en_US |
dc.contributor.author | Kuo-Mo Hsiao | en_US |
dc.date.accessioned | 2014-12-12T02:28:53Z | - |
dc.date.available | 2014-12-12T02:28:53Z | - |
dc.date.issued | 2001 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#NT900489079 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/69199 | - |
dc.description.abstract | 本研究的主要目的是以一致性共旋转法推导一个不对称开口薄壁梁元素,并探讨其节点内力及切线刚度矩阵中一些高次项对结构之非线性行为及挫屈负荷的影响。 本文中推导的梁元素有两个节点,每个节点有7个自由度。本文中将元素节点定在断面剪心,并取剪心轴当作梁元素变形的参考轴。本研究在当前梁元素变形的位置上建立元素座标,并在其上描述元素的变形。本研究利用虚功原理,完整的几何非线性梁理论的一致性二次线性化推导元素节点内力,本研究的节点内力除了保留全部的二次项外还保留了轴向扭转率的三阶项。 本研究用虚功原理推导梁元素节点内力时,元素节点内力所作的虚功是在元素受虚位移扰动前的元素座标上推导,但元素应力所作的虚功是在元素受虚位移扰动后的元素座标上推导,即将元素座标建立在元素受虚位移扰动后的位置,并在其上定义元素的变形及推导虚应变。本研究推导的元素节点内力能满足静力的平衡。本研究在推导元素的节点内力时,扣除了虚位移中刚体运动的部分,所以不能仅由元素节点内力对节点参数微分求得切线刚度矩阵,还要考虑元素节点内力在刚体运动时因方向改变造成的元素节点内力的改变。 本文中采用牛顿-拉福森法配合定弧长控制法的增量迭带法解非线性平衡方程式,以系统切线刚度矩阵之行列式值为零当作挫屈准则,本研究以数值例题分析梁结构的几何非线性行为及挫屈负荷,并与文献比较,以说明本研究提出的方法的正确性。因随着元素数目的增加,梁元素之长度,剪心轴侧向位移的一次微分,及扭转角会趋近于零,所以元素节点内力及刚度矩阵中含这些量之项亦会趋近于零,故本研究亦以数值例题探讨这些项对元素之收敛性分析的影响。 | zh_TW |
dc.description.abstract | A consistent procedure is proposed to derive the element internal nodal force and tangent stiffness matrix for asymmetric thin-walled beam element with open section using the virtual work principle combined with co-rotational total Lagrangian formulation. The effects of some higher order terms of element node forces and tangent stiffness matrix on the buckling load and postbuckling behavior of beam structures. In this thesis, a two-node element with seven degrees of freedom per node is developed. The element nodes are chosen to be the shear center of end section of the element. The shear center axis is employed as the reference axis of the beam element. The element deformation are referred to the undeformed geometry of the beam element and described in element coordinates which are constructed at the current configuration of the beam element. The element internal nodal forces are systematically derived by using virtual work principal and a consistent second-order linearization of the fully geometrically nonlinear beam theory. In this study, the terms up to the second order of rotation parameters and their spatial derivatives and the third-order term of twist rate are retained in the element nodal forces. When the virtual displacement method is used to derive the element nodal force, the external virtual work done by the element internal nodal force and the virtual nodal displacement are defined in the current element coordinates, which are regarded as fixed coordinates. However, the internal virtual work done by the element stress and the virtual strain corresponding to the virtual nodal displacement are defined in an element coordinates which are constructed at the disturbed configuration of the beam element corresponding to virtual nodal displacement. Note that the rigid body motion part in the virtual displacement is eliminated in the derivation of the internal virtual work. The tangent stiffness matrix is derived from the increment of the element nodal force corresponding to an infinitesimal incremental displacement. The increment of the element nodal force comprises the direction change of the element internal nodal force corresponding to the rigid body motion part in the infinitesimal incremental displacement and the increment of the element nodal force corresponding to the deformation part in the infinitesimal incremental displacement. An incremental-iterative method based on the Newton-Raphson method combined with constant arc length of incremental displacement vector is employed for the solution of nonlinear equilibrium equations. The zero value of the tangent stiffness matrix determinant of the structure is used as the criterion of the buckling state. To verify the accuracy of present formulation, numerical examples are studied and compared with published experimental results and numerical results for geometrically nonlinear behavior and nonlinear buckling load. With the increase of element number, the length of beam element, the twist angle and slopes of the beam axis will approach to zero. Thus, The corresponding terms in element internal nodal forces and element stiffness matrices will approach to zero too. To investigate the effects of these terms on the convergent solution of buckling load and deflections for beam structures, convergence tests are carried out for different numerical examples. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 开口薄壁梁 | zh_TW |
dc.subject | 挫屈 | zh_TW |
dc.subject | 共旋转推导法 | zh_TW |
dc.subject | THIN-WALLED OPEN-SECTION BEAMS | en_US |
dc.subject | BUCKLING | en_US |
dc.subject | COROTATIONAL FORMULATION | en_US |
dc.title | 不对称开口薄壁梁元素之一致性共旋转推导法及其在挫屈分析的应用 | zh_TW |
dc.title | A CONSISTENT COROTATIONAL FORMULATION FOR ASYMMETRIC THIN-WALLED OPEN-SECTION BEAMS AND ITS APPLICATION IN BUCKLING ANALYSIS | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 机械工程学系 | zh_TW |
显示于类别: | Thesis |