标题: 量子撞球台的数值方法
Numerical Methods for Quantum Billiards
作者: 林伯鸿
Po-Hung Lin
刘晋良
Jinn-Liang Liu
应用数学系所
关键字: 量子台;雅各大卫森;有限差分法;压缩;quantum billiard;Jacobi-Davidson;finite difference method;deflated
公开日期: 2001
摘要: 紧密封闭的撞球台在古典的和量子力学的领域里有长服务的原型系统。 许多有趣的结果在能量统计数值和波函数的密度分布上已经被获得了。 我们研究量子撞球台的特征态, 把圆盘和体育场的撞球台以特征问题陈述。 为了使赫尔蒙兹(Helmholtz)方程式离散化, 我们用一半移动的格子点把非均匀的网格用于辐射状方向。 我们用雅各大卫森(Jacobi–Davidson) 方法来解决这些特征值问题。 为计算这些连续特征值, 我们使用具有最新低等级的一个新颖清晰明确非等值(义)的压缩技术。
Closed billiards have long served as prototype systems in the field of classical and quantum dynamics. Many interesting results on statistics of energy and the density distribution of the wave function have been obtained. We study eigenstates of quantum billiards in the eigenproblem representation for the disk and stadium billiard. To discretize the Helmholtz equation, we use non-uniform meshes with half-shifted grid points in the radial direction. We use Jacobi-Davidson to solve these eigenproblems. For computing the successive eigenvalues, we use a novel explicit non-equivalence deflation technique with low-rank updates.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT900507023
http://hdl.handle.net/11536/69319
显示于类别:Thesis