完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.contributor.author | Lo, Yuan-Hsun | en_US |
dc.date.accessioned | 2014-12-08T15:09:06Z | - |
dc.date.available | 2014-12-08T15:09:06Z | - |
dc.date.issued | 2009-07-28 | en_US |
dc.identifier.issn | 0012-365X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.disc.2008.07.018 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/6938 | - |
dc.description.abstract | A subgraph in an edge-colored graph is multicolored if all its edges receive distinct colors. In this paper, we prove that a complete graph on 2m + 1 vertices K(2m+1) can be properly edge-colored with 2m + 1 colors in such a way that the edges of K(2m+1) can be partitioned into m multicolored Hamiltonian cycles. (C) 2009 Published by Elsevier B.V. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Complete graph | en_US |
dc.subject | Multicolored Hamiltonian cycles | en_US |
dc.subject | Parallelism | en_US |
dc.title | Multicolored parallelisms of Hamiltonian cycles | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.disc.2008.07.018 | en_US |
dc.identifier.journal | DISCRETE MATHEMATICS | en_US |
dc.citation.volume | 309 | en_US |
dc.citation.issue | 14 | en_US |
dc.citation.spage | 4871 | en_US |
dc.citation.epage | 4876 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000267632300026 | - |
dc.citation.woscount | 0 | - |
顯示於類別: | 期刊論文 |