标题: 即时单字音辨识系统之设计
Design of On-Line Isolated Word Recognition Systems
作者: 黄柏睿
Bo-Ruei Huang
陈永平
Yo-Ping Chen
电控工程研究所
关键字: 单音辨识;隐藏式马可夫模型;即时;isolated word recognition;Hidden Markov Model;real time or on-line
公开日期: 2001
摘要: 本论文之重点在于即时语单音辨识系统的设计与应用,以传统的马可夫模型为基础;再结合拥有学习功能的向量量化演算法,使整个系统不但提高了辨识率并且计算量也大为减少;进而缩短辨识所需的反应时间,以符合即时语音辨识系统的需求。而在语音学习方面,我们将辨识错误的声音直接与线上资料库作修正,以快速并有效的方式达到我们所要的需求,以提高其辨识率。对于语音的训练,针对未特定语者的语音辨识,我们使用维特比演算法来找出最佳的隐藏状态序列,并根据这个序列上的状态,利用k-means演算法来作分群,得到新的模型参数,将原本众多的模型参数减少到一定有效的量,以符合所需。
除了单音辨识外,即时连续数字辨识也将大略的介绍,我们是利用以动态时间较准的方式为基础的一阶状态演算法来求得连续语音的连接点,进而求得正确的辨识结果。利用一阶演算法来作连续数字辨识,其资料库的模型参数将会大大的影响其辨识结果,故其要慎选其训练语料。
The major concept in this thesis is about the design of on-line isolated words recognition systems. By combining with the traditional hidden Markov model and learning vector quantization, not only the recognition accuracy will increase but also computations will decrease. Therefore, the reaction time of the speech recognition will also decrease. By using the learning function to adjust directly the on-line database with the misclassified patterns, it will be fast and useful to improve the recognition accuracy. For the data training, the Viterbi algorithm has been used to find the best stat sequence for speaker-independent. And the k-means algorithm has been also used to cluster the mean vectors and variance vectors in each state in order to decrease the number of models in our database.
Besides, the connected digits recognition will be introduced conceptually. The one-state algorithm based on the dynamic time warping is used to recognize the connected digits. However, the models of the database will influence greatly the recognition result by using the one-state algorithm. So the training data must be chosen carefully.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT900591034
http://hdl.handle.net/11536/69406
显示于类别:Thesis