标题: | 振动式微陀螺仪电路系统之研究 The Study of Circuitry of Vibrating Microgyroscope |
作者: | 陈忠君 Chung-Chun Chen 邱俊诚 Jin-Chern Chiou 电控工程研究所 |
关键字: | 振动式微陀螺仪;弦波振荡器;位移感测器;ΣΔ A/D 转换器;Vibrating Microgyroscope;Sinusoidal Oscillator;Capactive Positive Sense Circuit;ΣΔ A/D Cinverter |
公开日期: | 2001 |
摘要: | 本篇论文的研究方向是发展三层多晶矽振动式微陀螺仪的电路系统,其电路系统包含弦波震荡器、位移感测器和ΣΔ A/D转换器。为了达到积体化的设计目标,所有的电路设计均采用VLSI技术来实现。因此本文将利用适合的电路架构,以获得稳健的电路系统。 首先,我们采用OTA-C的弦波振荡器,此电路架构在振荡条件与振幅控制上,都是使用转导放大器的增益作为调整设计,因此OTA-C的设计方式较适合积体电路的实现。其次,位移感测电路我们采取差动式输出的架构,原因是此电路对于电磁干扰、电源杂讯与热杂讯有较佳的抵抗力。最后在类比转数位的讯号上,由于ΣΔ A/D转换器不像传统转换器,必须使用高精度的模组或是增加校正的装置,来获得全系统较高的精度。所以在VLSI的技术中,这些架构可以充分得到高解析度类比-数位转换器的需求,比其他高精确度的类比元件更适合在快速的数位电路中实现。 本文最后将以SIMULINK® 来模拟二阶ΣΔ A/D转换器,其中考虑大多数ΣΔ调变器的非理想现象,藉以观察量化误差现象。并列举单回路二阶ΣΔ调变器电路作为设计目标,其有效解析度为16位元。 The circuitry of Y-axis vibrating microgyroscope is developed in a monolithic MEMS/circuits technology with VLSI and three layers of polysilicon thin films. The circuitry is consisted of sinusoidal oscillator, position sense circuits, and ΣΔ A/D converter. In order to achieve robust circuitry, suitable circuitry architecture was developed. Firstly, the sinusoidal oscillator with OTA-C structure is adopted, the oscillation condition and amplitude control of the structure are adjusted by tuning the gain of tranconductance. Since the structure contains only capacitors, thus, OTAs can be accomplished for CMOS implementation. Secondly, the position sensing circuit utilizes the differential readout for the reason that it is unsusceptible to EMI, supply variations and thermal noise. Finally, unlike traditional converters, the ΣΔ A/D converter requires high precision building blocks or correction mechanisms to obtain global precision. Note that ΣΔ A/D converters show very low sensitivity to the imperfections of the circuitry, at the price of extensive use of digital signal processing. Therefore, these architectures are adequate to achieve high-resolution A/D conversion in VLSI technologies; furthermore it is more suitable for implementing fast digital circuits than accurate analog circuits. Finally, the simulation of 2nd order ΣΔ modulator using SIMULINK® is conducted by taking account of most of the sigma-delta modulator non-idealities. The simulation can be used to observe the quantitative error of the designed system. By designing a single loop, single bit, 2nd order ΣΔ modulator, we are able to achieve effective resolution of 16 bits. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT900591068 http://hdl.handle.net/11536/69437 |
显示于类别: | Thesis |