标题: 即时适应性类神经控制在非线性多输入多输出系统上之追踪
On-line Adaptive Neural Control for MIMO Nonlinear Systems Tracking Using Diagonal Recurrent Neural Network model
作者: 曾才荣
Tsai-Jung Tseng
李祖添
Tsu-Tian Lee
电控工程研究所
关键字: 适应性;类神经;控制器;非线性;adaptive;neural;control;diagonal;recurrent;nonlinear
公开日期: 2001
摘要: 本篇论文提出一种应用递回神经网路模型为学习基础之非线性多输入多输出系统之即时适应性类神经滑动增益追踪控制理论。使用非线性状态回授来设计控制输入项,其中包含由对角递回神经网路即时估测系统的多个未知参数来建立模型。这个使用滑动更新模式设计导出的适应性学习法则,可以在短时间内调整递回神经网路的权值到最佳模型状态。模型系统的误差会渐近收敛至一个小的区间 ,且滑动模式控制补偿了此类神经近似的误差。只要所有的滑动面达到一个小的范围,则反馈式滑动增益的调整就会停止,此举也可以避免不必要的参数漂移现象发生。本篇论文也证明了导出的闭回路系统是稳定的,而多输入多输出非线性系统轨迹的追踪也可完成。最后,也将此即时适应性递回神经网路控制器与其他适应性修正型倒传递神经网路控制器作比较,可得到较好的结果。
A approach for on-line adaptive neural control of MIMO nonlinear systems is explored in this thesis with sliding gain using diagonal recurrent neural network (DRNN) learning model. We use the nonlinear state feedback to design the control input of a nonlinear system containing several unknown parameters of nonlinear systems. These parameters are estimated by diagonal recurrent neural networks with on-line modeling. The resulting adaptive learning law, which is designed by sliding mode update, can adjust the weights of DRNN to the optimal value for modeling in short time. System modeling errors are asympotatically converged to the small region , and a sliding-mode control which compensates for the neural approximation errors is proposed. The adaptation of the feedback sliding gain will stop as soon as all sliding surface have reached a small range. As a result, the undesirable parameter drift phenomenon can be avoided. It is proved that the resulting close-loop system is stable and the trajectory tracking of MIMO nonlinear systems is achieved. Some simulation results are also provided to evaluate the design. Finally, simulation results show that on-line adaptive DRNN controller provide better performance than the other adaptive modify back-propagation neural controller.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT900591100
http://hdl.handle.net/11536/69467
显示于类别:Thesis