Full metadata record
DC FieldValueLanguage
dc.contributor.authorMei, Mingen_US
dc.contributor.authorLin, Chi-Kunen_US
dc.contributor.authorLin, Chi-Tienen_US
dc.contributor.authorSo, Joseph W. -H.en_US
dc.date.accessioned2014-12-08T15:09:07Z-
dc.date.available2014-12-08T15:09:07Z-
dc.date.issued2009-07-15en_US
dc.identifier.issn0022-0396en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jde.2008.12.026en_US
dc.identifier.urihttp://hdl.handle.net/11536/6961-
dc.description.abstractIn this paper, we study a class of time-delayed reaction-diffusion equation with local nonlinearity for the birth rate. For all wave-fronts with the speed c > c(*), where c(*) > 0 is the critical wave speed, we prove that these wavefronts are asymptotically stable, when the initial perturbation around the traveling waves decays exponentially as x -> -infinity, but the initial perturbation can be arbitrarily large in other locations. This essentially improves the stability results obtained by Mei. So. Li and Shen [M. Mei, J.W.-H. So, M.Y. Li, S.S.R Shen, Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 579-594] for the speed c > 2 root D(m) (epsilon p - d(m)) with small initial perturbation and by Lin and Mei [C.-K. Lin, M. Mei, On travelling wavefronts of the Nicholson's blowflies equations with diffusion, submitted for publication] for c > c(*) with sufficiently small delay time r approximate to 0. The approach adopted in this paper is the technical weighted energy method used in [M. Mei, J.W.-H. So, M.Y. Li, S.S.R Shen, Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 579-594], but inspired by Gourley [S.A. Gourley, Linear stability of travelling fronts in an age-structured reaction-diffusion Population model, Quart. J. Mech. Appl. Math. 58 (2005) 257-268] and based on the property of the critical wavefronts, the weight function is carefully selected and it plays a key role in proving the stability for any c > c(*) and for an arbitrary time-delay r > 0. (C) 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectReaction-diffusion equationen_US
dc.subjectTime-delayen_US
dc.subjectTraveling wavesen_US
dc.subjectStabilityen_US
dc.titleTraveling wavefronts for time-delayed reaction-diffusion equation: (I) Local nonlinearityen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jde.2008.12.026en_US
dc.identifier.journalJOURNAL OF DIFFERENTIAL EQUATIONSen_US
dc.citation.volume247en_US
dc.citation.issue2en_US
dc.citation.spage495en_US
dc.citation.epage510en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000266302000008-
dc.citation.woscount35-
Appears in Collections:Articles


Files in This Item:

  1. 000266302000008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.