Full metadata record
DC FieldValueLanguage
dc.contributor.authorMei, Mingen_US
dc.contributor.authorLin, Chi-Kunen_US
dc.contributor.authorLin, Chi-Tienen_US
dc.contributor.authorSo, Joseph W. -H.en_US
dc.date.accessioned2014-12-08T15:09:07Z-
dc.date.available2014-12-08T15:09:07Z-
dc.date.issued2009-07-15en_US
dc.identifier.issn0022-0396en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jde.2008.12.020en_US
dc.identifier.urihttp://hdl.handle.net/11536/6962-
dc.description.abstractThis is the second part of a series of study oil the stability of traveling wavefronts of reaction-diffusion equations with time delays. In this paper we will consider a nonlocal time-delayed reaction-diffusion equation. When the initial perturbation around the traveling wave decays exponentially as x -> -infinity (but the initial perturbation call be arbitrarily large in other locations), we prove the asymptotic stability of all traveling waves for the reaction-diffusion equation, including even the slower waves whose speed are close to the critical speed. This essentially improves the previous stability results by Mei and So [M. Mei, J.W.-H. So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 551-568] for the speed c > 2 root D(m)(3 epsilon p-2d(m)) with a small initial perturbation. The approach we use here is the weighted energy method, but the weight function is more tricky to construct due to the property of the critical wavefront, and the difficulty arising from the nonlocal nonlinearity is also overcome. Finally, by using the Crank-Nicholson scheme, we present some numerical results which confirm Our theoretical Study. (C) 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNonlocal reaction-diffusion equationen_US
dc.subjectTime-delayen_US
dc.subjectTraveling wavesen_US
dc.subjectStabilityen_US
dc.titleTraveling wavefronts for time-delayed reaction-diffusion equation: (II) Nonlocal nonlinearityen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jde.2008.12.020en_US
dc.identifier.journalJOURNAL OF DIFFERENTIAL EQUATIONSen_US
dc.citation.volume247en_US
dc.citation.issue2en_US
dc.citation.spage511en_US
dc.citation.epage529en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000266302000009-
dc.citation.woscount29-
Appears in Collections:Articles


Files in This Item:

  1. 000266302000009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.