完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Shih, Chih-Wen | en_US |
dc.contributor.author | Tseng, Jui-Pin | en_US |
dc.date.accessioned | 2014-12-08T15:09:07Z | - |
dc.date.available | 2014-12-08T15:09:07Z | - |
dc.date.issued | 2009-07-15 | en_US |
dc.identifier.issn | 0960-0779 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.chaos.2007.12.005 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/6964 | - |
dc.description.abstract | Grossberg established a remarkable convergence theorem for a class of competitive systems without knowing and using Lyapunov function for the systems. We present the parallel investigations for the discrete-time version of the Grossberg's model. Through developing an extended component-competing analysis for the coupled system, without knowing a Lyapunov function and applying the LaSalle's invariance principle, the global pattern formation or the so-called global consensus for the system can be achieved. A numerical simulation is performed to illustrate the present theory. (C) 2008 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Global consensus for discrete-time competitive systems | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.chaos.2007.12.005 | en_US |
dc.identifier.journal | CHAOS SOLITONS & FRACTALS | en_US |
dc.citation.volume | 41 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 302 | en_US |
dc.citation.epage | 310 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000267182500032 | - |
dc.citation.woscount | 0 | - |
顯示於類別: | 期刊論文 |