标题: 应用重力法推求台湾最佳大地起伏模型之研究
A Study on the Determination of the Best Taiwan Geoid Model Using Gravity Method
作者: 刘蕙菁
Hui-Ching Liu
陈春盛
Chun-Sung Chen
土木工程学系
关键字: 大地起伏;二维平面快速傅立叶转换;一维球面快速傅立叶转换;最小二乘配置法;geoid undulation;two-dimensional plane fast fourier transform;one-dimensional spherical fast fourier transform;least square collocation
公开日期: 2002
摘要: 随着卫星科技之日渐成熟,GPS已广泛的应用在物理大地测量学中,其提供了取得高精度几何高差的机会,亦改变了传统高程测量的方法及概念,因此如何将GPS观测资料应用于高程系统中,已成为近年来一个重要的研究课题。然而应用GPS所测得之椭球高h与传统高程基准所使用的正高H其高程之基准并不一致,因此有赖一与地球重力位有关的物理量以为椭球高与正高之间提供适当的转换媒介,此物理量即为大地起伏(N=h-H)。若能以重力数据建立台湾之大地水准面模型,且其精度若能与GPS的测高精度相当者,那么藉由两者的结合即可求得精确的正高值,则GPS将可成为一极为经济的测定正高之方法。
本研究将针对数种不同的重力法,包括Stokes’积分式之二维平面快速傅立叶转换、一维球面快速傅立叶转换以及最小二乘配置法,并针对全球大地位模式EGM96及剩余地形模型理论以去除回复技术实行之,以推求台湾地区之重力法大地起伏值。另外将配合所收集之各笔不同时期、不同分布、不同密度所测得之台湾重力资料,计算台湾30〞×30〞之大地起伏模型,并进行比较分析。再以重力资料结合一等水准测量与GPS高程推求之大地起伏值检核所计算得之重力法大地水准面之精度,以期提供一最佳求定台湾大地起伏之计算模式与重力数据组合。
由本研究实验分析可知,以中研院603个重力点所计算出来之重力法大地起伏值之相对精度较单独由其他三笔资料来得好,其结果与检核值之相对差值的均方根值仅约5公分。另外,以Stokes’积分式之一维球面快速傅立叶转换计算台湾之大地起伏较优于二维平面快速傅立叶转换之计算方法,而以最小二乘配置法计算所得之大地起伏值之精度又优于Stokes’积分式之一维球面快速傅立叶转换与于二维平面快速傅立叶转换。本研究最后所建立之台湾最佳重力法大地起伏模型在台湾地区最大值可达28.564公尺,最小值为12.933公尺,其与台湾西部26座一等水准点之几何法大地起伏之差值最大值为5.8公分、最小值为-9.5公分、标准偏差为2.56公分、均方根值为4.78公分。
Due to the rapid development of GPS technique these years, it has been extensively applied to physical geodesy. GPS technique can obtain high-accuracy ellipsoidal heights, and change the face and concept of traditional heighting procedure. However, leveling height is orthometric and GPS height is ellipsoidal, so geoid undulation is essential for relating the two. If we can build up a high-accuracy geoid model, then GPS will be an inexpensive method to measure orthometric.
The geoid model has been strictly computed for Taiwan area in this research using Stokes’ formula with two-dimensional plane fast fourier transform (2D Plane FFT), one-dimensional spherical fast fourier transform (1D Spherical FFT) techniques and least square collocation (LSC) methods by remove-compute-restore technique. The computations of geoid undulations were carried out using data from EGM96 spherical harmonic model and residual terrain model for Taiwan. We use some gravity anomaly data, which are measured in different time, different distribution and different density, to compute the best Taiwan geoid model, and checked the accuracy of these models by GPS/Leveling observations.
The numerical analysis results show that the result using gravity anomaly collected by Academia Sinica (Yen et al., 1990) is better than other three items. The root mean square of the difference between the geoid undulations computed by gravimetric and GPS/Leveling methods is about 5 cm. According to the results, Stokes’ formula with 1D Spherical FFT is better then 2D Plane FFT method, and LSC is the best one. Moreover, the best Taiwan geoid computed by gravimetric is about 12.993 m to 28.564 m. The maximum, minimum, standard deviation, and root mean square of the difference between the geoid undulations computed by gravimetric and GPS/Leveling methods are 5.8, -9.5, 2.56 and 4.78 cm.
URI: http://140.113.39.130/cdrfb3/record/nctu/#NT910015039
http://hdl.handle.net/11536/69727
显示于类别:Thesis