Full metadata record
DC FieldValueLanguage
dc.contributor.author陳憲良en_US
dc.contributor.authorSian-Liang Chenen_US
dc.contributor.author廖維國en_US
dc.contributor.authorWei-Kuo Liaoen_US
dc.date.accessioned2014-12-12T02:30:00Z-
dc.date.available2014-12-12T02:30:00Z-
dc.date.issued2005en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009213548en_US
dc.identifier.urihttp://hdl.handle.net/11536/69923-
dc.description.abstract在普通網路上,我們關注於使用馬可夫決策過程(Markov Decision Process)和最大流量演算法,來找到一種路由的方式作為提升原本的最短路徑路由的效能,並且同時提供在大型網路上的可行性。本篇論文中,我們研究並列舉了不同觀念下的其他路由方法。我們的方法則是將系統模擬成可意識到資源需求的馬可夫決策過程,並將路由資訊粗化的觀念同時加入於其中。因此依據最近一個粗化過的路由訊息,這個方法能夠決定每個服務連結該走的路徑。接著模擬網路時,是針對不同的波松分布的,找一個特殊的網路來作例子。最後與最短路徑路由比較,我們的方法能夠達到減低網路上流量阻塞的機率,並且減低了在作路由時的過度通訊花費。zh_TW
dc.description.abstractWe have an interest in using Markov decision theory and Maxflow algorithm to find a policy for boosting shortest-path routing and providing network scalability. In this thesis, we study and list other routing strategies with different concepts. Our problem is modeled as a Markov decision process with an awareness of resource requirements and a certain extent of aggregation is added at the same time. This policy determines the route of each connection based on the latest aggregated information. A case study of a network is simulated with different Possion traffic rates according above assumptions. Finally we arrive at the goal of reducing the blocking probability of the network and the communication overhead can also be endured.en_US
dc.language.isoen_USen_US
dc.subject狀態zh_TW
dc.subject路由zh_TW
dc.subject大型網路zh_TW
dc.subjectStateen_US
dc.subjectRoutingen_US
dc.subjectScalableen_US
dc.title大型網路狀態取決路由:提升最短路徑路由的個案研究zh_TW
dc.titleA Scalable State-Dependent Routing: A Case Study for Boosting Shortest-Path Routingen_US
dc.typeThesisen_US
dc.contributor.department電信工程研究所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 354801.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.