Full metadata record
DC FieldValueLanguage
dc.contributor.author何孟如en_US
dc.contributor.authorMeng-Ru Hoen_US
dc.contributor.author盧鴻興en_US
dc.contributor.authorDr. Henry Horng-Shing Luen_US
dc.date.accessioned2014-12-12T02:30:08Z-
dc.date.available2014-12-12T02:30:08Z-
dc.date.issued2002en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT910337008en_US
dc.identifier.urihttp://hdl.handle.net/11536/70038-
dc.description.abstract微陣列 (microarray) 技術是一種能偵測訊息核糖核酸 (mRNA, messenger ribosnucleic acid) 不同表現的有利工具。因其能提供大量的資料,此技術在最近被廣泛的利用在生物與醫藥應用方面,但微陣列在生物上、實驗系統與隨機的變化使得分析微陣列的資料具有很大的挑戰性。本篇論文提出前景與背景之變異數分析模型 (foreground and background ANOVA models) 來分析微陣列資料中的生物、實驗與隨機的影響,利用加權最小平方法 (Weighted least squares estimation) 估計模型中的參數,並且採用重抽樣的方法,例如: 排列檢定(permutation tests)與拔靴法 (boostrap) ,得到信賴區間與顯著機率值(p-values)。本篇的結果與即時聚合鏈反應 (Real Time PCR) 和其他相關微陣列實驗的結果作比較。zh_TW
dc.description.abstractSpotted cDNA microarray (i.e., microscopic array) is a powerful tool to detect differential expressed genes in mRNA. Because of its capacity of high throughput, it has been widely used in biological and medical applications recently. Due to the biological, systematic and random variations of microarrays, it is a big challenge to analyze microarray data. In this paper we propose the foreground and background ANOVA models to explore the effects of biological, systematic and random variations from the microarray data. Weighted least squares estimation by the approach of coordinatewise descent is proposed to estimate the parameters. The confidence intervals and p-values are obtained by the resampling methods, including permutation tests and bootstrap methods. The results are compared with the findings by Real Time PCR and other microarray experiments.en_US
dc.language.isoen_USen_US
dc.subject微陣列zh_TW
dc.subject前景變異數分析模型zh_TW
dc.subject背景變異數分析模型zh_TW
dc.subject加權最小平方法zh_TW
dc.subject排列檢定zh_TW
dc.subject拔靴法zh_TW
dc.subjectMicroarrayen_US
dc.subjectForeground ANOVA modelen_US
dc.subjectBackground ANOVA modelen_US
dc.subjectWeighted least squares estimationen_US
dc.subjectPermutation testen_US
dc.subjectBootstrapen_US
dc.title關於微陣列資料的前景與背景之變異數分析模型zh_TW
dc.titleForeground and Background ANOVA Models for Microarray Dataen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis