Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Cheng-Hungen_US
dc.contributor.authorLin, Cheng-Jianen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:09:12Z-
dc.date.available2014-12-08T15:09:12Z-
dc.date.issued2009-07-01en_US
dc.identifier.issn1094-6977en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TSMCC.2009.2016572en_US
dc.identifier.urihttp://hdl.handle.net/11536/7022-
dc.description.abstractThis study presents an adaptive neural fuzzy network (ANFN) controller based on a modified differential evolution (MODE) for solving control problems. The proposed ANFN controller adopts a functional link neural network as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN controller is a nonlinear combination of input variables. The proposed MODE learning algorithm adopts an evolutionary learning method to optimize the controller parameters. For design optimization, a new criterion is introduced. A hardware-in-the loop control technique is developed and applied to the designed ANFN controller using the MODE learning algorithm. The proposed ANFN controller with the MODE learning algorithm (ANFN-MODE) is used in two practical applications-the planetary-train-type inverted pendulum system and the magnetic levitation system. The experiment is developed in a real-time visual simulation environment. Experimental results of this study have demonstrated the robustness and effectiveness of the proposed ANFN-MODE controller.en_US
dc.language.isoen_USen_US
dc.subjectDifferential evolution (DE)en_US
dc.subjectmagnetic levitation systemen_US
dc.subjectneural fuzzy networksen_US
dc.subjectplanetary-train-type inverted pendulumen_US
dc.titleNonlinear System Control Using Adaptive Neural Fuzzy Networks Based on a Modified Differential Evolutionen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TSMCC.2009.2016572en_US
dc.identifier.journalIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWSen_US
dc.citation.volume39en_US
dc.citation.issue4en_US
dc.citation.spage459en_US
dc.citation.epage473en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000267063800010-
dc.citation.woscount35-
Appears in Collections:Articles


Files in This Item:

  1. 000267063800010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.