标题: | 叶轮搅拌槽中之流场计算 Calculation of the Flow in Impeller Stirred Tanks |
作者: | 胡育昌 Yu-Chang Hu 崔燕勇 Yeng-Yung Tsui 机械工程学系 |
关键字: | 叶轮;搅拌槽;等间距叶片搅拌器;径向紊流搅拌器;周期性边界;多重参考座标;非结构性网格;impeller;stirred tanks;pitched blade turbine;radial turbulent impeller stirred tanks;cyclic boundary;multiple refernece frame;unstructured mesh |
公开日期: | 2002 |
摘要: | 摘 要 本研究主要是针对等间距叶片搅拌器(PBT)作流场之计算。早期的模拟是将流场简化为二维流场,不作圆周方向的计算。而对于叶片区域内的流场,也只以实验量测而不作计算。本研究所计算的范围是三维紊流流场,包含叶片区内和叶片区以外的范围。假设流场为拟似稳态如同一瞬时状态之近似,并以旋转座标系及静止座标系分别计算叶片区内和叶片区以外之流场,紊流模式是使用高雷诺数的 模式,对近壁面流场的处理是使用壁函数。由于搅拌槽叶片的尺寸外型皆相同,且流场为周期性变动,因此只取一适当计算范围作为周期性边界,计算此一范围之流场以减少计算量,计算网格是使用非结构性与非交错式网格。 本研究主要是对Dong[2]与Ranade[4]的实验模型作模拟,并分析垂直面与水平面流场结构,涡流发展情形,速度场与紊流动能分布,且将模拟与实验作比较,并研究叶片中心高度与叶片角度对流场之影响,以及计算其搅拌能力之无因次参数。 等间距叶片搅拌器(PBT)是属于轴向紊流搅拌器,结果显示当叶片角度垂直 时,且叶片中心的高度位于搅拌槽高度的一半,流场形成上下两个对称的循环,而射出方向也非一般轴向紊流搅拌器应有的轴向射出方向,反而类似径向紊流搅拌器,如盘式直叶搅拌器(Rushton turbine),的径向射出方向。而降低叶片中心位置高度并没有太大改变,只有将流场中心下移,并没有改变径向射出的方向及上下两个循环的结构。不同叶片角度对流场结构的影响较大,角度愈大搅拌能力愈好。但结果也显示叶片角度大到某一范围,循环的程度会下降,且角度愈大所消耗的功率也同时变大。 ABSTRACT This thesis is mainly aimed the calculation of the flow in pitched blade turbine. The simulation of the flow was simplified to 2-D regardless of the changes in azimuth. The region swept by impeller was measured rather than calculated. I calculate both inside and outside turbulent flow of the impeller swept region in 3-D. Assuming that the flow is quasi-steady like a snapshot approach I calculate the inside and outside flows of the impeller region by means of rotative and stationary frame of reference individually. Turbulent model is High Reynolds model; wall function is used to calculate the flow near wall. Because the sizes and shapes of the blades in a stirred tank are the same and the flow cycles, I select a suitable calculation range as cyclic boundary to reduce the amount of the calculation. Unstructured and no staggered meshes are adopted in our calculation. Simulating the experimental models of Dong [2] and Ranade [4] mainly, I analyze the vertical and horizontal planes of the flow structure, the development of the vortices, the velocity of flow fields, turbulent kinetic energy, and the comparison between simulation and experimental data. Studying the influence of the impeller clearance and that of blade angle on flow structure, I calculate the dimensionless parameters of mixing capacity. Although pitched blade turbine belongs to axial turbulent impeller stirred tank, the flow forms two symmetrical circulation above and below when the angle of blade is and the impeller clearance is half tank height. The direction of discharge of this axial turbulent impeller stirred tank is like that of radial impeller stirred tank such as Rushton turbine rather than that of itself. The center of the flow will go down, provided that I reduce impeller clearance. In addition, reducing impeller clearance will not change two circulating flow structures and the discharge direction of radial turbulent impeller stirred tanks. The influence of different blade angles on flow structure is of much. The larger the blade angle is, the better the mixing capacity is. The degree of circulation will be down, providing that the angle of blade is big to some extent. The bigger the angle of blade becomes, the more the turbulent dissipation rate rises. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT910489111 http://hdl.handle.net/11536/70870 |
显示于类别: | Thesis |