完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Selina Yo-Pingen_US
dc.contributor.authorJuan, Justie Su-Tzuen_US
dc.contributor.authorLin, Cheng-Kuanen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:09:17Z-
dc.date.available2014-12-08T15:09:17Z-
dc.date.issued2009-07-01en_US
dc.identifier.issn0218-0006en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00026-009-0011-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/7088-
dc.description.abstractA graph G is hamiltonian connected if there exists a hamiltonian path joining any two distinct nodes of G. Two hamiltonian paths P(1) = < u(1), u(2),..., u(v(G))> and P(2) = < v(1), v(2),...,v(v(G))> of G from u to v are independent if u = u(1) = v(1), v = u(v(G)) = v.( G), and u(i) not equal v(i) for every 1 < i < v(G). A set of hamiltonian paths, {P(1), P(2),..., P(k)}, of G from u to v are mutually independent if any two different hamiltonian paths are independent from u to v. A graph is k mutually independent hamiltonian connected if for any two distinct nodes u and v, there are k mutually independent hamiltonian paths from u to v. The mutually independent hamiltonian connectivity of a graph G, IHP( G), is the maximum integer k such that G is k mutually independent hamiltonian connected. Let n and k be any two distinct positive integers with n-k >= 2. We use S(n,k) to denote the (n, k)-star graph. In this paper, we prove that IHP(S(n,k)) = n-2 except for S(4,2) such that IHP(S(4,2)) - 1.en_US
dc.language.isoen_USen_US
dc.subjecthamiltonianen_US
dc.subjecthamiltonian connecteden_US
dc.subject(n, k)-star graphsen_US
dc.titleMutually Independent Hamiltonian Connectivity of (n, k)-Star Graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00026-009-0011-3en_US
dc.identifier.journalANNALS OF COMBINATORICSen_US
dc.citation.volume13en_US
dc.citation.issue1en_US
dc.citation.spage27en_US
dc.citation.epage52en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000268101800002-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000268101800002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。