完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Chang, Selina Yo-Ping | en_US |
| dc.contributor.author | Juan, Justie Su-Tzu | en_US |
| dc.contributor.author | Lin, Cheng-Kuan | en_US |
| dc.contributor.author | Tan, Jimmy J. M. | en_US |
| dc.contributor.author | Hsu, Lih-Hsing | en_US |
| dc.date.accessioned | 2014-12-08T15:09:17Z | - |
| dc.date.available | 2014-12-08T15:09:17Z | - |
| dc.date.issued | 2009-07-01 | en_US |
| dc.identifier.issn | 0218-0006 | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1007/s00026-009-0011-3 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/7088 | - |
| dc.description.abstract | A graph G is hamiltonian connected if there exists a hamiltonian path joining any two distinct nodes of G. Two hamiltonian paths P(1) = < u(1), u(2),..., u(v(G))> and P(2) = < v(1), v(2),...,v(v(G))> of G from u to v are independent if u = u(1) = v(1), v = u(v(G)) = v.( G), and u(i) not equal v(i) for every 1 < i < v(G). A set of hamiltonian paths, {P(1), P(2),..., P(k)}, of G from u to v are mutually independent if any two different hamiltonian paths are independent from u to v. A graph is k mutually independent hamiltonian connected if for any two distinct nodes u and v, there are k mutually independent hamiltonian paths from u to v. The mutually independent hamiltonian connectivity of a graph G, IHP( G), is the maximum integer k such that G is k mutually independent hamiltonian connected. Let n and k be any two distinct positive integers with n-k >= 2. We use S(n,k) to denote the (n, k)-star graph. In this paper, we prove that IHP(S(n,k)) = n-2 except for S(4,2) such that IHP(S(4,2)) - 1. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | hamiltonian | en_US |
| dc.subject | hamiltonian connected | en_US |
| dc.subject | (n, k)-star graphs | en_US |
| dc.title | Mutually Independent Hamiltonian Connectivity of (n, k)-Star Graphs | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1007/s00026-009-0011-3 | en_US |
| dc.identifier.journal | ANNALS OF COMBINATORICS | en_US |
| dc.citation.volume | 13 | en_US |
| dc.citation.issue | 1 | en_US |
| dc.citation.spage | 27 | en_US |
| dc.citation.epage | 52 | en_US |
| dc.contributor.department | 資訊工程學系 | zh_TW |
| dc.contributor.department | Department of Computer Science | en_US |
| dc.identifier.wosnumber | WOS:000268101800002 | - |
| dc.citation.woscount | 0 | - |
| 顯示於類別: | 期刊論文 | |

