Full metadata record
DC FieldValueLanguage
dc.contributor.author潘淑真en_US
dc.contributor.authorShu-Chen Panen_US
dc.contributor.author吳培元en_US
dc.contributor.authorPei Yuan Wuen_US
dc.date.accessioned2014-12-12T02:31:28Z-
dc.date.available2014-12-12T02:31:28Z-
dc.date.issued2002en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#NT910507006en_US
dc.identifier.urihttp://hdl.handle.net/11536/70939-
dc.description.abstract在本論文中,我們探討有關矩陣交換子的性質,以及兩個矩陣的commutant的維數性質。 首先,讓A是個 n-by-n矩陣,我們証明出以下二件事是對等的,(a) A的每一個特徵值的幾何重數,不是等於1,就是等於它的代數重數。(b) 給任意的n-by-n矩陣B,如果A跟B的交換子C=AB-BA即跟A互換,又跟B 互換,則這樣的C必為零。 接下來,讓A和B是兩個n-by-n的可互換矩陣,我們証明出,如果相對於A的每一個特徵值,均有不超過兩個的Jordan block,或是每一個Jordan block 都是1-by-1的,則A和B的commutant的維數至少會是n。此外,我們也完整的指出何時等號會成立。譬如當A是nonderogatory 時,就是一個例子。zh_TW
dc.description.abstractIn this thesis, we study properties of matrix commutators and the dimension of the commutant of two commuting matrices. First, we show that the following are equivalent conditions on a matrix A 2 Mn : (a) The geometric multiplicity of each eigenvalue of A is either equal to 1 or equal to its algebraic multiplicity. (b) For any B 2 Mn(C); if commutator C = AB ¡ BA commutes with both A and B, then C must be zero. Next, let A be an n-by-n complex matrix. If every eigenvalue of A has no more than two Jordan blocks or is associated with only 1-by-1 Jordan blocks, then for any B commutes with A, the dimension of the commutant of A and B is at least n. Moreover, under this condition on A we also completely determine when the above dimension equals n. In particular, this is the case when A is nonderogatory.en_US
dc.language.isozh_TWen_US
dc.subject交換子zh_TW
dc.subject交換矩陣zh_TW
dc.subject交換zh_TW
dc.subjectCommutatoren_US
dc.subjectCommutanten_US
dc.subjectcommuteen_US
dc.title交換子與交換矩陣zh_TW
dc.titleCommutator and Commutanten_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis