标题: | 利用基因演算法之Fuzzy ID3方法 Genetic Algorithm Based Fuzzy ID3 Method |
作者: | 刘瑞璋 JUI-CHANG LIU 张志永 Jyh-Yeong Chang 电控工程研究所 |
关键字: | 基因演算法;模糊;资料分类;fuzzy id3;genetic algorithm;classification |
公开日期: | 2002 |
摘要: | 许多关于图形辨识、机器学习和专家系统的解决方法,智慧诊断系统最常被使用于。在这个领域中一项最重要的发展是ID3方法,它是个受欢迎且有效的方法。ID3对符号属性的资料,产生一个决策树来做分类辨识,但不需要大量的计算过程。根据ID3方法的精神,模糊ID3方法依照资料各特征向量重要性及所定义之模糊函数来产生决策树。FID3可被延伸应用至处理含有连续数特征属性的资料,而不只是可处理符号属性的资料而已。 在本篇论文中,我们提出一个以基因演算法为基础的Fuzzy ID3理论方法,来建构一个模糊分类系统,其中特征向量所定义模糊集有最佳的参数。接着我们提出一个删简的方式来使我们所得到的模糊规则库更精简有效率,最后我们利用到一些有名资料来验证本方法的有效性。 Different approaches from pattern recognition, machine learning, and expert systems have been used in intelligent diagnostic systems. One of the most significant developments in this domain is the ID3 algorithm, which is a popular and efficient method of making a decision tree for classification from symbolic data without much computation. The fuzzy decision tree rooted from ID3 algorithm is similar to that of ID3 algorithm. Fuzzy ID3 algorithm is extended to apply to a data set containing continuous attribute values instead of symbolic attribute and generates a fuzzy decision tree using fuzzy sets. In this thesis, we proposed a genetic algorithm based Fuzzy ID3 algorithm to construct a classification system with a set of best tuned fuzzy membership functions. Next, we formulated a pruning method for our algorithm to obtain a more efficient rule base. Finally, we validate our new FID3 scheme via some famous data sets. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#NT910591027 http://hdl.handle.net/11536/71013 |
显示于类别: | Thesis |